首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   678篇
  免费   51篇
  729篇
  2024年   2篇
  2023年   1篇
  2022年   8篇
  2021年   21篇
  2020年   5篇
  2019年   10篇
  2018年   17篇
  2017年   13篇
  2016年   25篇
  2015年   31篇
  2014年   35篇
  2013年   52篇
  2012年   51篇
  2011年   50篇
  2010年   28篇
  2009年   36篇
  2008年   38篇
  2007年   44篇
  2006年   26篇
  2005年   50篇
  2004年   36篇
  2003年   37篇
  2002年   35篇
  2001年   3篇
  2000年   4篇
  1999年   8篇
  1998年   8篇
  1997年   9篇
  1996年   8篇
  1995年   5篇
  1994年   2篇
  1993年   2篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有729条查询结果,搜索用时 15 毫秒
71.
The glutamate metabotropic receptor 5 (mGluR5) and the adenosine A2A receptor (A2AR) represent major non‐dopaminergic therapeutic targets in Parkinson's disease (PD) to improve motor symptoms and slow down/revert disease progression. The 6‐hydroxydopamine rat model of PD was used to determine/compare the neuroprotective and behavioral impacts of single and combined administration of one mGluR5 antagonist, 2‐methyl‐6‐(phenylethynyl)pyridine (MPEP), and two A2AR antagonists, (E)‐phosphoric acid mono‐[3‐[8‐[2‐(3‐methoxyphenyl)vinyl]‐7‐methyl‐2,6‐dioxo‐1‐prop‐2‐ynyl‐1,2,6,7‐tetrahydropurin‐3‐yl]propyl] (MSX‐3) and 8‐ethoxy‐9‐ethyladenine (ANR 94). Chronic treatment with MPEP or MSX‐3 alone, but not with ANR 94, reduced the toxin‐induced loss of dopaminergic neurons in the substantia nigra pars compacta. Combining MSX‐3 and MPEP further improved the neuroprotective effect of either antagonists. At the behavioral level, ANR 94 and MSX‐3 given alone significantly potentiated l ‐DOPA‐induced turning behavior. Combination of either A2AR antagonists with MPEP synergistically increased L‐DOPA‐induced turning. This effect was dose‐dependent and required subthreshold drug concentration, which per se had no motor stimulating effect. Our findings suggest that co‐treatment with A2AR and mGluR5 antagonists provides better therapeutic benefits than those produced by either drug alone. Our study sheds some light on the efficacy and advantages of combined non‐dopaminergic PD treatment using low drug concentration and establishes the basis for in‐depth studies to identify optimal doses at which these drugs reach highest efficacy.

  相似文献   

72.
Protocatechuic acid (PCA) is a main metabolite of anthocyanins, whose daily intake is much higher than that of other polyphenols. PCA has biological effects, e.g., it induces the antioxidant/detoxifying enzyme gene expression. This study was aimed at defining the molecular mechanism responsible for PCA-induced over-expression of glutathione (GSH) peroxidase (GPx) and GSH reductase (GR) in J774 A.1 macrophages. New evidence is provided that PCA increases GPx and GR expression by inducing C-JUN NH2-terminal kinase (JNK)-mediated phosphorylation of Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2). RNA and proteins were extracted from cells treated with PCA (25 μM) for different time points. Quantitative real-time polymerase chain reaction and immunoblotting analyses showed a rapid increase in mRNA (>60%) and protein (>50%) for both the enzymes. This was preceded by the up-regulation of Nrf2, in terms of mRNA and protein, and by its significant activation as assessed by increased Nrf2 phosphorylation and nuclear translocation (+60%). By using specific kinase inhibitors and detecting the activated form, we showed that JNK was the main upstream kinase responsible for Nrf2 activation. Convincing evidence is provided of a causal link between PCA-induced Nrf2 activation and increased enzyme expression. By silencing Nrf2 and using a JNK inhibitor, enzyme enhancement was counteracted. Finally, with the ChIP assay, we demonstrated that PCA-activated Nrf2 specifically bound ARE sequences in enzyme gene promoters. Our study demonstrates for the first time that PCA improves the macrophage endogenous antioxidant potential by a mechanism in which JNK-mediated Nrf2 activation plays an essential role. This knowledge could contribute to novel diet-based approaches aimed at counteracting oxidative injury by reinforcing endogenous defences.  相似文献   
73.
Microtubules are dynamic structures that play a crucial role in cellular division and are recognized as an important target for cancer therapy. In search of new compounds with strong antiproliferative activity and simple molecular structure, a new series of 2-amino-3-(3′,4′,5′-trimethoxybenzoyl)-5-(hetero)aryl ethynyl thiophene derivatives was prepared by the Sonogashira coupling reaction of the corresponding 5-bromothiophenes with several (hetero)aryl acetylenes. When these compounds were analyzed in vitro for their inhibition of cell proliferation, the 2- and 3-thiophenyl acetylene derivatives were the most powerful compounds, both of which exerted cytostatic effects at submicromolar concentrations. In contrast, the presence of a more flexible ethyl chain between the (hetero)aryl and the 5-position of the thiophene ring resulted in significant reduction in activity relative to the 5-(hetero)aryl acetylene substituted derivatives. The effects of a selected series of compounds on cell cycle progression correlated well with their strong antiproliferative activity and inhibition of tubulin polymerization. We found that the antiproliferative effects of the most active compounds were associated with increase of the proportion of cells in the G2/M and sub-G1 phases of the cell cycle.  相似文献   
74.
A collection of analogues of the dimeric natural product psammaplin A that differ in the substitution on the (halo)tyrosine aryl ring, the oxime and the diamine connection has been synthesized. The effects on cell cycle, induction of differentiation and apoptosis of the natural-product inspired series were measured on the human leukaemia U937 cell line. Epigenetic profiling included induction of p21(WAF1), effects on global H3 histone and tubulin acetylation levels as well as in vitro enzymatic assays using HDAC1, DNMT1, DNMT3A, SIRT1 and a peptide domain with p300/CBP HAT activity. Whereas the derivatives of psammaplin A with modifications in the length of the connecting chain, the oxime bond and the disulfide unit showed lower potency, the analogues with changes on the bromotyrosine ring exhibited activities comparable to those of the parent compound in the inhibition of HDAC1 and in the induction of apoptosis. The lack of HDAC1 activity of analogues modified on the disulfide bond suggests that its cleavage must occur in cells to produce the monomeric Zn(2+)-chelating thiol. This assumption is consistent with the molecular modelling of the complex of psammaplin A thiol with h-HDAC8. Only a weak inhibition of DNMT1, DNMT3A and residual activities with SIRT1 and a p300/CBP HAT peptide were measured for these compounds.  相似文献   
75.
In a previous paper we identified several 1-aryl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-2-sulfonamides that displayed inhibitory effects toward selected carbonic anhydrase isozymes at micromolar concentration. In order to deepen the structure-activity relationships (SARs) and identify novel compounds with improved activity, we synthesized a series of monomethoxy analogues of the previously investigated dimethoxy derivatives. The evaluation of biological profile has been focused on in vitro effects against several CA isoforms. The new monomethoxy derivatives showed higher hCA inhibitory effects against several isoforms compared to the dimethoxy analogues. Particularly, some of these compounds (e.g., 1b and 1h) showed low nanomolar K(I) values and excellent selectivity for hCA IX and hCA XIV versus hCA I and II inhibition.  相似文献   
76.
A novel class of KAT modulators (long chain alkylidenemalonates, LoCAMs) has been identified. Variations of the alkyl chain length can change the activity profile from inhibition of both KAT3A/KAT2B (as derivative 2a) to the peculiar profile of pentadecylidenemalonate 1b, the first activator/inhibitor of histone acetyltransferases. Together with the powerful apoptotic effect (particularly notable if considering that anacardic acid and other KAT inhibitors are not cell permeable) appoint them as valuable biological tools to understand the mechanisms of lysine acetyltransferases.  相似文献   
77.
This minireview deals of a protein, a class III secreted peroxidase, present as unique isoform in the latex of the perennial Mediterranean shrub Euphorbia characias. The paper reports on the molecular properties, on the structures (primary, secondary and tertiary), and on the catalytic mechanism of this enzyme. Here is also reported the extraordinary effect of calcium ions on the structure and on the enzyme activity of Euphorbia peroxidase. These ions can either enhance the catalytic efficiency of the enzyme toward some substrates or can regulate the ability of the enzyme to execute different metabolic pathways toward the same substrate. This review will give a valuable reference to the peroxidase fans and the general readers will find many thorough suggestions for future researches giving birth to new studies and important discoveries.  相似文献   
78.
Regenerative medicine seeks to repair or replace damaged tissues or organs, with the goal to fully restore structure and function without the formation of scar tissue. Cell based therapies are promising new therapeutic approaches in regenerative medicine. By using mesenchymal stem cells, good results have been reported for bone engineering in a number of clinical studies, most of them investigator initiated trials with limited scope with respect to controls and outcome. With the implementation of a new regulatory framework for advanced therapeutic medicinal products, the stage is set to improve both the characterization of the cells and combination products, and pave the way for improved controlled and well-designed clinical trials. The incorporation of more personalized medicine approaches, including the use of biomarkers to identify the proper patients and the responders to treatment, will be contributing to progress in the field. Both translational and clinical research will move the boundaries in the field of regenerative medicine, and a coordinated effort will provide the clinical breakthroughs, particularly in the many applications of bone engineering.  相似文献   
79.
80.
Intense nanosecond pulsed electric fields (nsPEFs) interact with cellular membranes and intracellular structures. Investigating how cells respond to nanosecond pulses is essential for a) development of biomedical applications of nsPEFs, including cancer therapy, and b) better understanding of the mechanisms underlying such bioelectrical effects. In this work, we explored relatively mild exposure conditions to provide insight into weak, reversible effects, laying a foundation for a better understanding of the interaction mechanisms and kinetics underlying nsPEF bio-effects. In particular, we report changes in the nucleus of Jurkat cells (human lymphoblastoid T cells) exposed to single pulses of 60 ns duration and 1.0, 1.5 and 2.5 MV/m amplitudes, which do not affect cell growth and viability. A dose-dependent reduction in alkaline comet-assayed DNA migration is observed immediately after nsPEF exposure, accompanied by permeabilization of the plasma membrane (YO-PRO-1 uptake). Comet assay profiles return to normal within 60 minutes after pulse delivery at the highest pulse amplitude tested, indicating that our exposure protocol affects the nucleus, modifying DNA electrophoretic migration patterns.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号