全文获取类型
收费全文 | 60篇 |
免费 | 8篇 |
专业分类
68篇 |
出版年
2022年 | 1篇 |
2020年 | 1篇 |
2019年 | 1篇 |
2018年 | 1篇 |
2017年 | 1篇 |
2016年 | 2篇 |
2015年 | 1篇 |
2014年 | 1篇 |
2012年 | 5篇 |
2011年 | 4篇 |
2010年 | 2篇 |
2009年 | 2篇 |
2008年 | 2篇 |
2007年 | 1篇 |
2006年 | 2篇 |
2005年 | 3篇 |
2004年 | 3篇 |
2003年 | 2篇 |
2002年 | 1篇 |
2001年 | 2篇 |
2000年 | 4篇 |
1999年 | 3篇 |
1992年 | 1篇 |
1989年 | 2篇 |
1985年 | 2篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1973年 | 2篇 |
1972年 | 1篇 |
1971年 | 1篇 |
1969年 | 3篇 |
1967年 | 1篇 |
1966年 | 2篇 |
1965年 | 2篇 |
1957年 | 1篇 |
排序方式: 共有68条查询结果,搜索用时 15 毫秒
41.
Background
Fibronectin (FN) is a large multidomain molecule that is involved in many cellular processes. Different FN isoforms arise from alternative splicing of the pre-mRNA including, most notably, the FN isoform that contains the “extra-domain-B” (ED-B). The FN isoform containing ED-B (known as B-FN) is undetectable in healthy adult tissues but is present in large amounts in neoplastic and foetal tissues as well as on the blood vessels during angiogenesis. Thus, antibodies specific for B-FN can be useful for detecting and targeting neoplastic tissues in vivo. We previously characterised C6, a new monoclonal antibody specific for human B-FN and we suggested that it reacts with the B-C loop of the type III repeat 8 which is masked in FN isoforms lacking ED-B and that the insertion of ED-B in FN molecules unmasked it. Here we have now consolidated and refined the characterization of this B-FN specific antibody demonstrating that the epitope recognized by C6 also includes loop E-F of ED-B.Methodology
We built the three dimensional model of the variable regions of the mAb C6 and of the FN fragment EDB-III8 and performed protein:protein docking simulation using the web server ClusPro2.0. To confirm the data obtained by protein:protein docking we generated mutant fragments of the recombinant FN fragment EDB-III8 and tested their reactivity with C6.Conclusion
The monoclonal antibody C6 reacts with an epitope formed by the B-C loop of domain III8 and the E-F loop of ED-B. Both loops are required for an immunological reaction, thus this monoclonal is strictly specific for B-FN but the part of the epitope on III8 confers the human specificity. 相似文献42.
Rosano C Sabini E Rizzi M Deriu D Murshudov G Bianchi M Serafini G Magnani M Bolognesi M 《Structure (London, England : 1993)》1999,7(11):1427-1437
BACKGROUND: Hexokinase I sets the pace of glycolysis in the brain, catalyzing the ATP-dependent phosphorylation of glucose. The catalytic properties of hexokinase I are dependent on product inhibition as well as on the action of phosphate. In vivo, a large fraction of hexokinase I is bound to the mitochondrial outer membrane, where the enzyme adopts a tetrameric assembly. The mitochondrion-bound hexokinase I is believed to optimize the ATP/ADP exchange between glucose phosphorylation and the mitochondrial oxidative phosphorylation reactions. RESULTS: The crystal structure of human hexokinase I has been determined at 2.25 A resolution. The overall structure of the enzyme is in keeping with the closed conformation previously observed in yeast hexokinase. One molecule of the ATP analogue AMP-PNP is bound to each N-terminal domain of the dimeric enzyme in a surface cleft, showing specific interactions with the nucleotide, and localized positive electrostatic potential. The molecular symmetry brings the two bound AMP-PNP molecules, at the centre of two extended surface regions, to a common side of the dimeric hexokinase I molecule. CONCLUSIONS: The binding of AMP-PNP to a protein site separated from the catalytic centre of human hexokinase I can be related to the role played by some nucleotides in dissociating the enzyme from the mitochondrial membrane, and helps in defining the molecular regions of hexokinase I that are expected to be in contact with the mitochondrion. The structural information presented here is in keeping with monoclonal antibody mapping of the free and mitochondrion-bound forms of the enzyme, and with sequence analysis of hexokinases that differ in their mitochondria binding properties. 相似文献
43.
S Zuccotti D Zanardi C Rosano L Sturla M Tonetti M Bolognesi 《Journal of molecular biology》2001,313(4):831-843
Glucose-1-phosphate thymidylyltransferase is the first enzyme in the biosynthesis of dTDP-l-rhamnose, the precursor of l-rhamnose, an essential component of surface antigens, such as the O-lipopolysaccharide, mediating virulence and adhesion to host tissues in many microorganisms. The enzyme catalyses the formation of dTDP-glucose, from dTTP and glucose 1-phosphate, as well as its pyrophosphorolysis. To shed more light on the catalytic properties of glucose-1-phosphate thymidylyltransferase from Escherichia coli, specifically distinguishing between ping pong and sequential ordered bi bi reaction mechanisms, the enzyme kinetic properties have been analysed in the presence of different substrates and inhibitors. Moreover, three different complexes of glucose-1-phosphate thymidylyltransferase (co-crystallized with dTDP, with dTMP and glucose-1-phosphate, with d-thymidine and glucose-1-phosphate) have been analysed by X-ray crystallography, in the 1.9-2.3 A resolution range (R-factors of 17.3-17.5 %). The homotetrameric enzyme shows strongly conserved substrate/inhibitor binding modes in a surface cavity next to the topological switch-point of a quasi-Rossmann fold. Inspection of the subunit tertiary structure reveals relationships to other enzymes involved in the biosynthesis of nucleotide-sugars, including distant proteins such as the molybdenum cofactor biosynthesis protein MobA. The precise location of the substrate relative to putative reactive residues in the catalytic center suggests that, in keeping with the results of the kinetic measurements, both catalysed reactions, i.e. dTDP-glucose biosynthesis and pyrophosphorolysis, follow a sequential ordered bi bi catalytic mechanism. 相似文献
44.
Ilaria Gritti Veronica Basso Darawan Rinchai Federica Corigliano Silvia Pivetti Marco Gaviraghi Dalia Rosano Davide Mazza Sara Barozzi Marco Roncador Giovanni Parmigiani Gaelle Legube Dario Parazzoli Davide Cittaro Davide Bedognetti Anna Mondino Simona Segalla Giovanni Tonon 《The EMBO journal》2022,41(22)
The ribonuclease DIS3 is one of the most frequently mutated genes in the hematological cancer multiple myeloma, yet the basis of its tumor suppressor function in this disease remains unclear. Herein, exploiting the TCGA dataset, we found that DIS3 plays a prominent role in the DNA damage response. DIS3 inactivation causes genomic instability by increasing mutational load, and a pervasive accumulation of DNA:RNA hybrids that induces genomic DNA double‐strand breaks (DSBs). DNA:RNA hybrid accumulation also prevents binding of the homologous recombination (HR) machinery to double‐strand breaks, hampering DSB repair. DIS3‐inactivated cells become sensitive to PARP inhibitors, suggestive of a defect in homologous recombination repair. Accordingly, multiple myeloma patient cells mutated for DIS3 harbor an increased mutational burden and a pervasive overexpression of pro‐inflammatory interferon, correlating with the accumulation of DNA:RNA hybrids. We propose DIS3 loss in myeloma to be a driving force for tumorigenesis via DNA:RNA hybrid‐dependent enhanced genome instability and increased mutational rate. At the same time, DIS3 loss represents a liability that might be therapeutically exploited in patients whose cancer cells harbor DIS3 mutations. 相似文献
45.
Modulation of endothelial GSH concentrations: effect of exogenous GSH and GSH monoethyl ester 总被引:7,自引:0,他引:7
We studied the effects of exogenous glutathione (GSH) and GSH monoethyl ester (GSH-MEE) on the enhancement of endothelial GSH concentrations. The preparation of GSH-MEE used contained 91% GSH-MEE, approximately 9% GSH diethyl ester (GSH-DEE) and a trace amount of GSH. Both GSH and GSH-MEE markedly stimulated the intracellular concentrations of GSH in endothelial cells. GSH-MEE was more potent than GSH. The enhancement of endothelial GSH concentration by exogenous GSH was completely inhibited by buthionine sulfoximine (BSO), a potent inhibitor of gamma-glutamylcysteine synthase, or acivicin (AT-125), an inhibitor of gamma-glutamyl transpeptidase, suggesting that it was due to the extracellular breakdown and subsequent intracellular resynthesis of GSH. In contrast, the effect of GSH-MEE was largely resistant to BSO and acivicin, suggesting that it was primarily due to transport of GSH-MEE followed by intracellular hydrolysis. The GSH-MEE preparation, which contained 9% GSH-DEE, at concentrations of 2 mM or higher caused vacuolization of endothelial cells. The enhancement of GSH concentrations by exogenous GSH, but not by GSH-MEE, protected endothelial cells against H2O2-induced injury. 相似文献
46.
47.
beta2-microglobulin, the light chain component of the major histocompatibility complex I, is involved in the development of DRA, an amyloid deposition disease occurring in man. Specifically, the beta2-microglobulin component, dissociated form the complex heavy chain, gives rise to amyloidogenic deposits in the joints of patients exposed to long dialysis periods. beta2-microglobulin three-dimensional structure is based on an antiparallel beta-barrel fold, with immunoglobulin domain topology, displaying structural flexibility in the crystal and NMR structures so fare determined. The structural bases of amyloidogenic potential in beta2-microglobulin can be related to local unfolding, to the tendency to aggregate laterally through non-compensated beta-strands, and partly also to its trend towards N-terminal proteolytic degradation. Such trends emerge quite clearly from inspection of a limited number of crystal structures of beta2-microglobulin as an isolated chain, separated form the major histocompatibility complex I heavy chain. 相似文献
48.
Chersi A di Modugno F Rosano L 《Zeitschrift für Naturforschung. C, Journal of biosciences》2000,55(1-2):109-114
The binding affinity of synthetic nonapeptides to human leucocyte antigens (HLA) molecules of the A0201 allotype, the most common in Caucasian, is enhanced or reduced by suitable amino acid substitutions at position 4, as a result of increased or decreased chain flexibility. A higher flexibility of the bond at this position correlates with an easier accommodation of the fragment into the HLA groove, while rigidity of the peptide chain appears to interfere. These data are based on two lines of evidence: a) most natural high affinity ligands for HLA-A0201 possess, at position 4, flexible residues b) substitutions of such residues by rigid amino acids results in a decrease of binding affinity. 相似文献
49.
Cyanide binding to Lucina pectinata hemoglobin I and to sperm whale myoglobin: an x-ray crystallographic study. 下载免费PDF全文
M Bolognesi C Rosano R Losso A Borassi M Rizzi J B Wittenberg A Boffi P Ascenzi 《Biophysical journal》1999,77(2):1093-1099
The x-ray crystal structures of the cyanide derivative of Lucina pectinata monomeric hemoglobin I (L. pectinata HbI) and sperm whale (Physeter catodon) myoglobin (Mb), generally taken as reference models for monomeric hemoproteins carrying hydrogen sulfide and oxygen, respectively, have been determined at 1.9 A (R-factor = 0. 184), and 1.8 A (R-factor = 0.181) resolution, respectively, at room temperature (lambda = 1.542 A). Moreover, the x-ray crystal structure of the L. pectinata HbI:cyanide derivative has been studied at 1.4-A resolution (R-factor = 0.118) and 100 K (on a synchrotron source lambda = 0.998 A). At room temperature, the cyanide ligand is roughly parallel to the heme plane of L. pectinata HbI, being located approximately 2.5 A from the iron atom. On the other hand, the crystal structure of the L. pectinata HbI:cyanide derivative at 100 K shows that the diatomic ligand is coordinated to the iron atom in an orientation almost perpendicular to the heme (the Fe-C distance being 1.95 A), adopting a coordination geometry strictly reminescent of that observed in sperm whale Mb, at room temperature. The unusual cyanide distal site orientation observed in L. pectinata HbI, at room temperature, may reflect reduction of the heme Fe(III) atom induced by free radical species during x-ray data collection using Cu Kalpha radiation. 相似文献
50.
In studying perfluorooctyl bromide (PFOB) dispersions in aqueous media, we have used two types of surfactant: egg yolk phospholipids (EYP) and polyglycerol esters (PGE). Our interest in these dispersions arises from their potential biomedical applications as imaging solutions and oxygen-carrying solutions (i.e., blood substitutes). For EYP systems, we have identified the dispersion structure as consisting of (a) PFOB droplets (250-nm diameter) stabilized by a phospholipid monolayer adsorbed irreversibly at the o/w interface and (b) small empty phospholipid vesicles. With both surfactants commercial preparations yielded stable systems, while purified samples, being non-dispersible, could not be made to act as emulsifiers. In both cases, minor components in the commercial surfactant were found to be necessary for the formation of a stable dispersion, enabling the transport of the pure surfactant to the PFOB/water interface. 相似文献