首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   773篇
  免费   31篇
  2023年   4篇
  2022年   6篇
  2021年   14篇
  2020年   9篇
  2019年   6篇
  2018年   17篇
  2017年   10篇
  2016年   25篇
  2015年   41篇
  2014年   29篇
  2013年   64篇
  2012年   67篇
  2011年   68篇
  2010年   36篇
  2009年   38篇
  2008年   42篇
  2007年   59篇
  2006年   43篇
  2005年   41篇
  2004年   36篇
  2003年   31篇
  2002年   27篇
  2001年   7篇
  2000年   9篇
  1999年   6篇
  1998年   6篇
  1996年   3篇
  1995年   2篇
  1994年   5篇
  1993年   7篇
  1992年   2篇
  1991年   8篇
  1990年   3篇
  1989年   4篇
  1986年   3篇
  1985年   3篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1969年   2篇
  1967年   1篇
  1932年   1篇
  1930年   1篇
  1929年   1篇
排序方式: 共有804条查询结果,搜索用时 15 毫秒
61.
Bone materials are characterized by an astonishing variability and diversity. Still, because of 'architectural constraints' due to once chosen material constituents and their physical interaction, the fundamental hierarchical organization or basic building plans of bone materials remain largely unchanged during biological evolution. Such universal patterns of microstructural organization govern the mechanical interaction of the elementary components of bone (hydroxyapatite, collagen, water; with directly measurable tissue-independent elastic properties), which are here quantified through a multiscale homogenization scheme delivering effective elastic properties of bone materials: at a scale of 10nm, long cylindrical collagen molecules, attached to each other at their ends by approximately 1.5nm long crosslinks and hosting intermolecular water inbetween, form a contiguous matrix called wet collagen. At a scale of several hundred nanometers, wet collagen and mineral crystal agglomerations interpenetrate each other, forming the mineralized fibril. At a scale of 5-10microm, the extracellular solid bone matrix is represented as collagen fibril inclusions embedded in a foam of largely disordered (extrafibrillar) mineral crystals. At a scale above the ultrastructure, where lacunae are embedded in extracellular bone matrix, the extravascular bone material is observed. Model estimates predicted from tissue-specific composition data gained from a multitude of chemical and physical tests agree remarkably well with corresponding acoustic stiffness experiments across a variety of cortical and trabecular, extracellular and extravascular materials. Besides from reconciling the well-documented, seemingly opposed concepts of 'mineral-reinforced collagen matrix' and 'collagen-reinforced mineral matrix' for bone ultrastructure, this approach opens new possibilities in the exploitation of computer tomographic data for nano-to-macro mechanics of bone organs.  相似文献   
62.
The conformational behavior of receptor-bound acetylcholine (ACh) was investigated by molecular dynamics simulations. Based on the great similarity among muscarinic receptors, the study was focused on the human M(1), M(2), and M(5) receptors as previously modeled by us. The results showed that receptor-bound ACh was not frozen in a single preferred conformation but preserved an unexpected fraction of its conformational space. However, there were marked differences between the three receptors since the ligand was mostly trans in the M(1) receptor, equally distributed among trans and gauche conformers in M(2), and exclusively gauche in the M(5); the greater flexibility of M(2)-bound ACh was paralleled by the greater flexibility of the occupied M(2) binding site. By contrast, the property space of receptor-bound ACh, and particularly its virtual (computed, conformation-dependent) lipophilicity, was restricted to relatively narrow ranges optimal for successful interaction. Experimental binding investigations to the individual human M(1), M(2), and M(5) muscarinic receptors showed ACh to have a 10-fold higher affinity for the M(2) compared to the M(1) and M(5) receptors. This selectivity was not confirmed by the calculated binding scores, a fact postulated to be caused by the absence of an entropy component in such binding scores. Indeed, the Shannon entropy of all geometric and physicochemical properties monitored were markedly higher in M(2)-bound ACh compared to M(1)-bound and M(5)-bound ACh. This finding suggests that the selectivity profile of acetylcholine for the M(2) receptor is largely entropy-driven, a fact that might explain the intrinsic difficulty to design subtype-selective muscarinic agonists.  相似文献   
63.
Herein we report the results of mutation analysis of the ATP7B gene in a group of 134 Wilson disease (WD) families (268 chromosomes) prevalently of Italian origin. Using the SSCP and sequencing methods we identified 71 disease-causing mutations. Twenty-four were novel, while 19 more mutations already described, were identified in new populations in this study. A known mutation G591D showed a regional distribution, since it was only detected in 38.5% of the analyzed chromosomes in WD patients originating from Apulia, a region of South Italy. Detection of new mutations in the ATP7B gene increases our capability of molecular analysis that is essential for early diagnosis and treatment of WD.  相似文献   
64.
Chinese Hamster Ovary fibroblasts (CHO-K1) have shown different protein contents when undergoing differentiation by 3',5'-cyclic adenosine monophosphate (cAMP), which is known to induce reverse transformation (RT) from malignancy to fibroblast-like characteristics. The mass spectrometry (MS) investigation here reported about the behavior of CHO-K1 cells before and after exposure to cAMP reveals a change in the composition of nuclear proteins associated to an inhibition of the protein expression. Possible implications of this finding on the control of cell reverse transformation are discussed.  相似文献   
65.
66.
67.
Epigenetic dysfunction has been implicated in a growing list of disorders that include cancer, neurodevelopmental disorders, and neurodegeneration. Williams syndrome (WS) and 7q11.23 duplication syndrome (Dup7) are rare neurodevelopmental disorders with broad phenotypic spectra caused by deletion and duplication, respectively, of a 1.5-Mb region that includes several genes with a role in epigenetic regulation. We have identified striking differences in DNA methylation across the genome between blood cells from children with WS or Dup7 and blood cells from typically developing (TD) children. Notably, regions that were differentially methylated in both WS and Dup7 displayed a significant and symmetrical gene-dose-dependent effect, such that WS typically showed increased and Dup7 showed decreased DNA methylation. Differentially methylated genes were significantly enriched with genes in pathways involved in neurodevelopment, autism spectrum disorder (ASD) candidate genes, and imprinted genes. Using alignment with ENCODE data, we also found the differentially methylated regions to be enriched with CCCTC-binding factor (CTCF) binding sites. These findings suggest that gene(s) within 7q11.23 alter DNA methylation at specific sites across the genome and result in dose-dependent DNA-methylation profiles in WS and Dup7. Given the extent of DNA-methylation changes and the potential impact on CTCF binding and chromatin regulation, epigenetic mechanisms most likely contribute to the complex neurological phenotypes of WS and Dup7. Our findings highlight the importance of DNA methylation in the pathogenesis of WS and Dup7 and provide molecular mechanisms that are potentially shared by WS, Dup7, and ASD.  相似文献   
68.
69.
70.
A series of trisubstituted naphthalimides have been synthesized and evaluated as telomeric G-quadruplex ligands by biophysical methods. Affinity for telomeric G-quadruplex AGGG(TTAGGG)(3) binding was first screened by fluorescence titrations. Subsequently, the interaction of the telomeric G-quadruplex with compounds showing the best affinity has been studied by isothermal titration calorimetry and UV-melting experiments. The two best compounds of the series tightly bind the telomeric quadruplex with a 2:1 drug/DNA stoichiometry. These derivatives have been further evaluated for their ability to inhibit telomerase by a TRAP assay and their pharmacological properties by treating melanoma (M14) and human lung cancer (A549) cell lines with increasing drug concentrations. A dose-dependent inhibition of cell proliferation was observed for all cellular lines during short-term treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号