首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   14篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   4篇
  2018年   1篇
  2017年   5篇
  2016年   12篇
  2015年   11篇
  2014年   19篇
  2013年   16篇
  2012年   18篇
  2011年   14篇
  2010年   8篇
  2009年   12篇
  2008年   19篇
  2007年   15篇
  2006年   12篇
  2005年   10篇
  2004年   9篇
  2003年   7篇
  2002年   8篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   5篇
  1993年   2篇
  1991年   1篇
  1990年   2篇
  1988年   2篇
  1985年   1篇
排序方式: 共有234条查询结果,搜索用时 656 毫秒
161.
Peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) participates in control of expression of genes involved in adaptive thermogenesis, muscle fiber type differentiation, and fuel homeostasis. The objective of the present study was to evaluate the participation of cold-induced PGC-1alpha expression in muscle fiber type-specific activity of proteins that belong to the insulin-signaling pathway. Rats were exposed to 4 degrees C for 4 days and acutely treated with insulin in the presence or absence of an antisense oligonucleotide to PGC-1alpha. Cold exposure promoted a significant increase of PGC-1alpha and uncoupling protein-3 protein expression in type I and type II fibers of gastrocnemius muscle. In addition, cold exposure led to higher glucose uptake during a hyperinsulinemic clamp, which was accompanied by higher expression and membrane localization of GLUT4 in both muscle fiber types. Cold exposure promoted significantly lower insulin-induced tyrosine phosphorylation of the insulin receptor (IR) and Ser473 phosphorylation of acute transforming retrovirus thymoma (Akt) and an insulin-independent increase of Thr172 phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK). Inhibition of PGC-1alpha expression in cold-exposed rats by antisense oligonucleotide treatment diminished glucose clearance rates during a hyperinsulinemic clamp and reduced expression and membrane localization of GLUT4. Reduction of PGC-1alpha expression resulted in no modification of insulin-induced tyrosine phosphorylation of the IR and Ser473 phosphorylation of Akt. Finally, reduction of PGC-1alpha resulted in lower Thr172 phosphorylation of AMPK. Thus cold-induced hyperexpression of PGC-1alpha participates in control of skeletal muscle glucose uptake through a mechanism that controls GLUT4 expression and subcellular localization independent of the IR and Akt activities but dependent on AMPK.  相似文献   
162.
The surface anionic groups of untreated or dimethyl sulfoxide (DMSO)-treatedHerpetomonas samuelpessoai cells were analyzed by cell electrophoresis, ultrastructural cytochemistry, and identification of sialic acids using thin-layer chromatography. Differentiation ofH. samuelpessoai induced by DMSO treatment caused a significant increase in the net negative surface charge. In flagellates exposed to DMSO, more cationized ferritin, colloidal iron hydroxide, and sendai virus particles bound to the cell surface. Treatment of both untreated and DMSO-treated flagellates with neuraminidase decreased markedly the EPM of cells to the cathodic pole. These findings suggest that sialic acid residues are the major anionogenic groups exposed on the surface ofH. samuelpessoai. Thin-layer chromatography showed thatN-acetyl andN,O-diacylneuraminic acids, in equal proportions, were present inH. samuelpessoai. However,N-acetylneuraminic acid predominates in DMSO-treated cells.  相似文献   
163.
164.
Drug-resistant tuberculosis (TB) is a growing global threat. Approximately 450,000 people developed multidrug-resistant TB worldwide in 2012 and an estimated 170,000 people died from the disease. This paper describes the sociodemographic, clinical-epidemiological and bacteriological aspects of TB and correlates these features with the distribution of anti-TB drug resistance. Mycobacterium tuberculosis (MT) cultures and drug susceptibility testing were performed according to the BACTEC MGIT 960 method. The results demonstrated that MT strains from individuals who received treatment for TB and people who were infected with human immunodeficiency virus were more resistant to TB drugs compared to other individuals (p < 0.05). Approximately half of the individuals received supervised treatment, but most drug-resistant cases were positive for pulmonary TB and exhibited positive acid-fast bacilli smears, which are complicating factors for TB control programs. Primary healthcare is the ideal level for early disease detection, but tertiary healthcare is the most common entry point for patients into the system. These factors require special attention from healthcare managers and professionals to effectively control and monitor the spread of TB drug-resistant cases.  相似文献   
165.
166.
Folding of group II introns is characterized by a first slow compaction of domain 1 (D1) followed by the rapid docking of other domains to this scaffold. D1 compaction initiates in a small subregion encompassing the κ and ζ elements. These two tertiary elements are also the major interaction sites with domain 5 to form the catalytic core. Here, we provide the first characterization of the structure adopted at an early folding step and show that the folding control element can be narrowed down to the three-way junction with the κ motif. In our nuclear magnetic resonance studies of this substructure derived from the yeast mitochondrial group II intron Sc.ai5γ, we show that a high affinity Mg(II) ion stabilizes the κ element and enables coaxial stacking between helices d′ and d′′, favoring a rigid duplex across the three-way junction. The κ-element folds into a stable GAAA-tetraloop motif and engages in A-minor interactions with helix d′. The addition of cobalt(III)hexammine reveals three distinct binding sites. The Mg(II)-promoted structural rearrangement and rigidification of the D1 core can be identified as the first micro-step of D1 folding.  相似文献   
167.
168.
ABSTRACT: BACKGROUND: Regular exercises are commonly described as an important factor in health improvement, being directly related to contractile force development in cardiac cells.In order to evaluate the links between swimming exercise intensity and cardiac adaptation by using high molecular mass proteomics, isogenic Wistar rats were divided into four groups: one control (CG) and three training groups (TG's), with low, moderate and high intensity of exercises.In order to evaluate the links between swimming exercise intensity and cardiac adaptation by using high molecular mass proteomics, isogenic Wistar rats were divided into four groups: one control (CG) and three training groups (TG's), with low, moderate and high intensity of exercises. RESULTS: Findings here reported demonstrated clear morphologic alterations, significant cellular injury and increased energy supplies at high exercise intensities. alpha-MyHC, as well proteins associated with mitochondrial oxidative metabolism were shown to be improved. alpha-MyHC expression increase 1.2 fold in high intensity training group when compared with control group. alpha-MyHC was also evaluated by real-time PCR showing a clear expression correlation with protein synthesis data increase in 8.48 fold in high intensity training group. Other myofibrillar protein, troponin , appear only in high intensity group, corroborating the cellular injury data. High molecular masses proteins such as MRS2 and NADH dehydrogenase, involved in metabolic pathways also demonstrate increase expression, respectily 1.5 and 1.3 fold, in response to high intensity exercise. CONCLUSIONS: High intensity exercise demonstrated an increase expression in some high molecular masses myofibrilar proteins, alpha-MyHC and troponin. Furthermore this intensity also lead a significant increase of other high molecular masses proteins such as MRS2 and NADH dehydrogenase in comparison to low and moderate intensities. However, high intensity exercise also represented a significant degree of cellular injury, when compared with the individuals submitted to low and moderate intensities.  相似文献   
169.
Plasmodium vivax is the most prevalent of the five species causing malaria in humans. The current available treatment for P. vivax malaria is limited and unsatisfactory due to at least two drawbacks: the undesirable side effects of primaquine (PQ) and drug resistance to chloroquine. Phenylalanine-alanine-PQ (Phe-Ala-PQ) is a PQ prodrug with a more favorable pharmacokinetic profile compared to PQ. The toxicity of this prodrug was evaluated in in vitro assays using a human hepatoma cell line (HepG2), a monkey kidney cell line (BGM), and human red blood cells deficient in the enzyme glucose-6-phosphate-dehydrogenase (G6PD). In addition, in vivo toxicity assays were performed with rats that received multiple doses of Phe-Ala-PQ to evaluate biochemical, hematological, and histopathological parameters. The activity was assessed by the inhibition of the sporogonic cycle using a chicken malaria parasite. Phe-Ala-PQ blocked malaria transmission in Aedes mosquitoes. When compared with PQ, it was less cytotoxic to BGM and HepG2 cells and caused less hemolysis of G6PD-deficient red blood cells at similar concentrations. The prodrug caused less alteration in the biochemical parameters than did PQ. Histopathological analysis of the liver and kidney did show differences between the control and Phe-Ala-PQ-treated groups, but they were not statistically significant. Taken together, the results highlight the prodrug as a novel lead compound candidate for the treatment of P. vivax malaria and as a blocker of malaria transmission.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号