首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   350篇
  免费   52篇
  402篇
  2020年   4篇
  2019年   2篇
  2018年   9篇
  2017年   4篇
  2016年   12篇
  2015年   16篇
  2014年   12篇
  2013年   13篇
  2012年   24篇
  2011年   21篇
  2010年   9篇
  2009年   8篇
  2008年   19篇
  2007年   16篇
  2006年   17篇
  2005年   16篇
  2004年   17篇
  2003年   14篇
  2002年   14篇
  2001年   7篇
  2000年   9篇
  1999年   10篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1994年   5篇
  1992年   5篇
  1991年   8篇
  1990年   5篇
  1989年   3篇
  1988年   6篇
  1987年   2篇
  1986年   4篇
  1985年   4篇
  1983年   4篇
  1982年   5篇
  1979年   2篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1975年   2篇
  1974年   3篇
  1973年   3篇
  1972年   4篇
  1971年   4篇
  1970年   8篇
  1969年   4篇
  1968年   6篇
  1967年   2篇
  1961年   2篇
排序方式: 共有402条查询结果,搜索用时 15 毫秒
51.
Thymidine and uridine transporters in peripheral pig lymphocytes have structural features in common, but are not identical. Accelerated entry of [3H]thymidine begins 12h after the addition of phytohaemagglutinin. The increased thymidine uptake into the cells is characterized by an increase in Vmax. Without alteration of the apparent Km(0.6+/-0.08muM). Thymidine kinase activity is increased 12h after stimulation. Both the increased thymidine uptake and the increased thymidine kinase activity are inhibited in cultures incubated with puromycin: rates of degradation of the two systems are unchanged after phytohaemagglutinin addition, and indicate similar half-lives of about 2h. Thymidine kinase is rate-limiting for thymidine entry up to 18h after phytohaemagglutinin addition; increase in its synthesis is detectable about 6h before net incorporation of thymidine into DNA is significantly promoted.  相似文献   
52.
The substantial differences between trypanosomal and leishmanial DNA topoisomerase IB concerning to their homologues in mammals have provided a new lead in the study of the structural determinants that can be effectively targeted. Leishmania donovani, the causative agent of visceral leishmaniasis, contains an unusual heterodimeric DNA topoisomerase IB. The catalytically active enzyme consists of a large subunit (LdTopIL), which contains the non-conserved N-terminal end and the phylogenetically conserved "core" domain, and of a small subunit (LdTopIS) which harbors the C-terminal region with the characteristic tyrosine residue in the active site. Heterologous co-expression of LdTopIL and LdTopIS genes in a topoisomerase I deficient yeast strain, reconstitutes a fully functional enzyme LdTopIL/S which can be used for structural studies. An approach by combinatorial cloning of deleted genes encoding for truncated versions of both subunits was used in order to find out structural insights involved in enzyme activity or protein-protein interaction. The role played by the non-conserved N-terminal extension of LdTopIL in both relaxation activity and CPT sensitivity has been examined co-expressing the full-length LdTopIS and a fully active LdTopIDeltaS deletion with several deletions of LdTopIL lacking growing sequences of the N-terminal end. The sequential deletion study shows that the first 26 amino acids placed at the N-terminal end and a variable region comprised between Ala548 to end of the C-terminal extension of LdTopIL were enzymatically dispensable. Altogether this combinatorial approach provides important structural insights of the regions involved in relaxation activity and for understanding the atypical structure of this heterodimeric enzyme.  相似文献   
53.
Sheep-urine-induced changes in soil microbial community structure   总被引:1,自引:0,他引:1  
Soil microbial communities play an important role in nutrient cycling and nutrient availability, especially in unimproved soils. In grazed pastures, sheep urine causes local changes in nutrient concentration which may be a source of heterogeneity in microbial community structure. In the present study, we investigated the effects of synthetic urine on soil microbial community structure, using physiological (community level physiological profiling, CLPP), biochemical (phospholipid fatty acid analysis, PLFA) and molecular (denaturing gradient gel electrophoresis, DGGE) fingerprinting methods. PLFA data suggested that synthetic urine treatment had no significant effect on total microbial (total PLFA), total bacterial or fungal biomass; however, significant changes in microbial community structure were observed with both PLFA and DGGE data. PLFA data suggested that synthetic urine induced a shift towards communities with higher concentrations of branched fatty acids. DGGE banding patterns derived from control and treated soils differed, due to a higher proportion of DNA sequences migrating only to the upper regions of the gel in synthetic urine-treated samples. The shifts in community structure measured by PLFA and DGGE were significantly correlated with one another, suggesting that both datasets reflected the same changes in microbial communities. Synthetic urine treatment preferentially stimulated the use of rhizosphere-C in sole-carbon-source utilisation profiles. The changes caused by synthetic urine addition accounted for only 10-15% of the total variability in community structure, suggesting that overall microbial community structure was reasonably stable and that changes were confined to a small proportion of the communities.  相似文献   
54.
Polysulfone membrane is used for the first time for the preparation of electrochemical immunosensors. A disposable immunosensor based on a porous conductor polymer graphite-polysulfone-electrode has been developed using a phase inversion technique for the determination of anti-rabbit IgG (anti-RIgG) as a model analyte. To construct the sensor, a conductor membrane was deposited on the surface of working graphite-epoxy composite (GEC) electrode. The membrane was characterized by SEM. This sensor was based on the competitive assay between free and labeled anti-RIgG for the available binding sites of immobilized rabbit IgG (RIgG). Incubation parameters were optimized in this work. The immunological reaction was detected using an enzymatic-labeling procedure (HRP enzyme) combined with the amperometric detection using H(2)O(2) as substrate and hydroquinone as mediator. This sensor shows stability during a week and a good reproducibility. The current was monitored amperometrically at -0.1 V versus SCE and this method showed a linear range of the anti-RIgG from 1 to 6 microg/ml. The detection limit was determined to be 0.77 microg/ml.  相似文献   
55.
56.
57.
58.
59.
Nat Cell Biol 14 4, 401–408 March042012The intestine represents the most vigorously renewing, adult epithelial tissue that makes maintenance of its homeostasis a delicate balance between proliferation, cell cycle arrest, migration, differentiation, and cell death. These processes are precisely controlled by a network of developmental signalling cascades, which include Wnt, Notch, BMP/TGFβ, and Hedgehog pathways. A new, elegant study by Wong et al (2012) now adds Lrig1 as a key player in the control of intestinal homeostasis. As for epidermal stem cells, Lrig1 limits the size of the intestinal progenitor compartment by dampening EGF/ErbB-triggered stem cell expansion.The epithelium of the small intestine is separated into two distinct compartments: a proliferative crypt, containing tissue-specific stem cells, and a villus with differentiated, short-lived cells, which are replenished by a constant stream of cell migration from the underlying crypt (Scoville et al, 2008). In particular, the canonical Wnt pathway in combination with Notch signals control stem cell maintenance and proliferation in the crypt. In addition, both pathways direct differentiation into the Paneth and the absorptive cell lineage, respectively. Intensive cross-talk between the epithelium and the underlying mesenchyme helps to define the crypt–villus boundary. This relies on epithelial-derived Hedgehog and Wnt ligands that trigger stromal BMP production, which in turn signals back to the epithelium to restrict proliferation to the crypt. A gradient of BMP antagonists produced by mesenchymal cells at the bottom of the crypts supports compartmentalization. In addition, a Wnt gradient in the crypt defines EphB expression and establishes repulsion-mediated separation into Paneth cell, proliferative, and differentiation zones along the crypt–villus axis (Figure 1A).Open in a separate windowFigure 1(A) The epithelium of the small intestine contains two populations of multipotent stem cells that reside at the bottom of the crypts. These give rise to transit-amplifying progenitors, which rapidly divide while migrating upwards. Cell cycle arrest and functional differentiation occur when these cells pass from the upper part of the crypt into the villus where they continue their upward movement until they finally undergo apoptosis. Only long-living Paneth cells follow a different path as they migrate downwards to populate the base of the crypt. Control of proliferation and lineage specification of all intestinal epithelial cells is directed in a self-organizing, dynamically regulated process based on cell–cell and cell–environment interactions. Among them, Wnt and Notch signalling have been defined as major determinants for stem cell maintenance, for proliferation of stem cells in the crypt and lineage specification. Epithelial-derived Hedgehog ligands and reciprocal stromal BMP ligands establish a connection between the epithelium and the stroma that regulates the crypt–villus boundary. In addition, repulsive interactions mediated by the Eph/ephrin family allow establishment of stable compartments. Importantly, ErbB signalling, which is partially suppressed by Lrig1 at the base of the crypt, is now shown to be a new key player in the control of stem and progenitor cell expansion. (B) Cross-talk of signalling pathways in intestinal homeostasis with an emphasis on ErbB signalling. A negative feedback loop via Lrig1 helps to fine-tune population size and proliferative activity of intestinal progenitor cells. Lrig1 has been identified as a direct target of Myc and is known to repress ErbB signalling. Myc itself is a main target of the ErbB and Wnt pathways implicated in intestinal stem and progenitor cell expansion. Moreover, Lrig1 has been found to promote BMP signalling, which interferes with intestinal proliferation by restricting AKT activation via PTEN.In the small intestine, two stem cell (SC) populations coexist: Lgr5+crypt base columnar cells (CBCs) that cycle every 24 h and are interspersed between Paneth cells, and slower dividing SCs concentrated above (around position +4 relative to the crypt bottom) the Lgr5+position (Takeda et al, 2011). The localization of these Hopx+mTert+slowly cycling SCs partly overlaps with that of quiescent cells, which show long-term label retention upon irradiation damage and pulse labelling with BrdU. Lgr5+CBCs are, however, dispensable (Tian et al, 2008) and can be replaced by the second stem cell population, which also shows greater activity during damage repair. The relationship between these two stem cell populations, which can reciprocally generate each other, and the mechanisms that govern quiescence are being elucidated. Importantly, leucine-rich repeats and Ig-like domains 1 (Lrig1), a transmembrane protein that interacts with ErbBs and promotes its degradation, has now been found to be enriched at the crypt base and in the progenitor compartment of the small intestine and colon (Wong et al, 2012). Lrig1 is highly expressed in Lgr5+, Musashi1+, Ascl2+, and Olfm4+CBCs, and shows an inverse relation to the pattern of activated, phosphorylated EGFR above the crypt base (Figure 1A). In line with these patterns, deletion of Lrig1 in the mouse causes a dramatic crypt expansion and increased numbers of CBCs, transit-amplifying and Paneth cells. Whether the increase of Paneth cells, which actually do not express Lrig1, is a secondary effect due to the progenitor expansion remains open. Importantly, reduction of EGFR signalling by pharmacological (Gefitinib) and genetic modulation (Egfrwa-2 mice) is able to partially normalize all Lrig1 phenotypes. These data establish EGF/ErbB signalling, as an important regulator of the crypt compartment, and suggest Lrig1 as a central control that dampens the expansion of stem cells during normal intestinal homeostasis.Lrig1 was initially identified in the skin and proposed to maintain epidermal stem cells in a quiescent state (Watt and Jensen, 2009). Lrig1 marks human interfollicular epidermal stem cells, which can give rise to all epithelial lineages including hair follicle cells in skin reconstitution assays. However, during normal homeostasis, these cells are only bipotent, contributing to the sebaceous gland and the interfollicular epidermis. In contrast to quiescent Lrig1+SCs in the skin, Lrig1+ intestinal SCs are rapidly dividing and Lrig1 appears to only reduce their proliferative capacity. However, similar to the situation in the skin, Lrig1 and EGF signalling may play an important role during damage repair. Earlier experiments analysed the phenotype of mice lacking major EGF family members (Egger et al, 1997; Troyer et al, 2001). While these mice display some duodenal lesions during normal homeostasis, further experiments established EGF signalling as a key protective component that ameliorates mucosal damage. It remains to be seen whether activation of intestinal SCs during damage repair involves mitigation of Lrig1 dampening.Lrig1 is known to repress ErbB signalling by mediating ubiquitinylation and degradation of activated receptors, thereby limiting the amplitude of EGF signalling (Watt and Jensen, 2009). Consequently, Lrig1 deletion in the intestine induced upregulation of EGFR, ErbB2, and ErbB3, promoting downstream activation of c-Myc within intestinal stem and progenitor cells (Wong et al, 2012). Importantly, Lrig1 is a direct Myc target gene, and thereby part of a negative feedback loop that helps to fine-tune the population size and proliferative activity of intestinal progenitor cells (Figure 1B).Since the rescue of the Lrig1−/− phenotype by EGFR deficiency was only partial (Wong et al, 2012), other mechanisms may contribute. Intriguingly, Lrig1 has been shown to promote BMP signalling by direct binding to Type I (ALK6) and Type II (ALK1, ALK2, ALK3, and ActRIB) BMP receptors (Gumienny et al, 2010). BMPR1A inactivation, deficiency of its downstream effector PTEN, and transgenic overexpression of the BMP inhibitor Noggin display crypt expansion and increased SC numbers. Inhibition of BMP signalling in these genetic models enhanced AKT activation and increased Wnt signalling, promoting proliferation and adenoma formation (Figure 1B; Scoville et al, 2008). Future work will reveal a potential involvement of BMP and Wnt signalling in the Lrig1 knockout phenotype.The ErbB pathway has been linked to inflammatory bowel disease, and progression and metastatic potential of colorectal cancer. EGFR inhibition blocks adenoma formation in preclinical models, and ErbB pathway inhibition is currently being evaluated in clinical trials with colorectal cancer patients, where promising results have been reported (Cunningham et al, 2004). In contrast, Lrig1 is expressed at low levels in several cancer types but is overexpressed in some prostate and colorectal tumours (Hedman and Henriksson, 2007). Given this heterogeneity, the Lrig1 function in tumours appears to be cell- and context-dependent. Due to early postnatal lethality of Lrig1 knockout mice, the exciting possibility that Lrig1 may act as an intestinal tumour suppressor could not be answered by the current study but clearly deserves further attention.  相似文献   
60.
The 'social complexity hypothesis' for communication posits that groups with complex social systems require more complex communicative systems to regulate interactions and relations among group members. Complex social systems, compared with simple social systems, are those in which individuals frequently interact in many different contexts with many different individuals, and often repeatedly interact with many of the same individuals in networks over time. Complex communicative systems, compared with simple communicative systems, are those that contain a large number of structurally and functionally distinct elements or possess a high amount of bits of information. Here, we describe some of the historical arguments that led to the social complexity hypothesis, and review evidence in support of the hypothesis. We discuss social complexity as a driver of communication and possible causal factor in human language origins. Finally, we discuss some of the key current limitations to the social complexity hypothesis-the lack of tests against alternative hypotheses for communicative complexity and evidence corroborating the hypothesis from modalities other than the vocal signalling channel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号