首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   531篇
  免费   41篇
  2022年   5篇
  2021年   7篇
  2020年   9篇
  2019年   9篇
  2018年   4篇
  2017年   6篇
  2016年   16篇
  2015年   24篇
  2014年   30篇
  2013年   26篇
  2012年   34篇
  2011年   37篇
  2010年   18篇
  2009年   11篇
  2008年   24篇
  2007年   35篇
  2006年   31篇
  2005年   35篇
  2004年   33篇
  2003年   35篇
  2002年   30篇
  2001年   4篇
  2000年   5篇
  1999年   6篇
  1998年   6篇
  1997年   6篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   9篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1976年   3篇
  1974年   6篇
  1971年   2篇
  1970年   2篇
  1964年   2篇
  1963年   2篇
  1962年   3篇
  1899年   1篇
排序方式: 共有572条查询结果,搜索用时 281 毫秒
91.
? Little is known about how effectors from filamentous eukaryotic plant pathogens manipulate host defences. Recently, Phytophthora infestans RXLR effector AVR3a has been shown to target and stabilize host E3 ligase CMPG1, which is required for programmed cell death (PCD) triggered by INF1. We investigated the involvement of CMPG1 in PCD elicited by perception of diverse pathogen proteins, and assessed whether AVR3a could suppress each. ? The role of CMPG1 in PCD events was investigated using virus-induced gene silencing, and the ability of AVR3a to suppress each was determined by transient expression of natural forms (AVR3a(KI) and AVR3a(EM)) and a mutated form, AVR3a(KI/Y147del) , which is unable to interact with or stabilize CMPG1. ? PCD triggered at the host plasma membrane by Cf-9/Avr9, Cf-4/Avr4, Pto/AvrPto or the oomycete pathogen-associated molecular pattern (PAMP), cellulose-binding elicitor lectin (CBEL), required CMPG1 and was suppressed by AVR3a, but not by the AVR3a(KI/Y147del) mutant. Conversely, PCD triggered by nucleotide-binding site-leucine-rich repeat (NBS-LRR) proteins R3a, R2 and Rx was independent of CMPG1 and unaffected by AVR3a. ? CMPG1-dependent PCD follows perception of diverse pathogen elicitors externally or in association with the inner surface of the host plasma membrane. We argue that AVR3a targets CMPG1 to block initial signal transduction/regulatory processes following pathogen perception at the plasma membrane.  相似文献   
92.
A new Pavlovian conditioning preparation was developed using the nictitating membrane of the restrained pigeon. Either visual or auditory stimuli served as conditioned stimuli (CSs) with an unconditioned stimulus (US) of a puff of air to the cornea. Movement of the nictitating membrane constituted the conditioned and unconditioned responses (CR and UR). Conditioning was studied with the Kamin blocking procedure. In agreement with findings from other conditioning preparations, responding to the redundant stimulus was attenuated relative to a stimulus that received the same number of CS-US pairings in a compound-conditioning procedure. Although response attenuation occurred, substantial individual variation was observed within the blocking procedure, a finding with some precedent in the experimental literature. Theoretical analysis and neural-network simulations indicate that inter-subject variation in response attenuation may result from differences in the extent to which contextual stimuli contribute to the functional CS.  相似文献   
93.
By consensus, the acyl-CoA synthetase (ACS) community, with the advice of the human and mouse genome nomenclature committees, has revised the nomenclature for the mammalian long-chain acyl-CoA synthetases. ACS is the family root name, and the human and mouse genes for the long-chain ACSs are termed ACSL1,3-6 and Acsl1,3-6, respectively. Splice variants of ACSL3, -4, -5, and -6 are cataloged. Suggestions for naming other family members and for the nonmammalian acyl-CoA synthetases are made.  相似文献   
94.
Ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) plays a critical role in sustaining life by catalysis of carbon fixation in the Calvin–Benson pathway. Incomplete knowledge of the assembly pathway of chloroplast Rubisco has hampered efforts to fully delineate the enzyme's properties, or seek improved catalytic characteristics via directed evolution. Here we report that a Mu transposon insertion in the Zea mays (maize) gene encoding a chloroplast dimerization co‐factor of hepatocyte nuclear factor 1 (DCoH)/pterin‐4α‐carbinolamine dehydratases (PCD)‐like protein is the causative mutation in a seedling‐lethal, Rubisco‐deficient mutant named Rubisco accumulation factor 2 (raf21). In raf2 mutants newly synthesized Rubisco large subunit accumulates in a high‐molecular weight complex, the formation of which requires a specific chaperonin 60‐kDa isoform. Analogous observations had been made previously with maize mutants lacking the Rubisco biogenesis proteins RAF1 and BSD2. Chemical cross‐linking of maize leaves followed by immunoprecipitation with antibodies to RAF2, RAF1 or BSD2 demonstrated co‐immunoprecipitation of each with Rubisco small subunit, and to a lesser extent, co‐immunoprecipitation with Rubisco large subunit. We propose that RAF2, RAF1 and BSD2 form transient complexes with the Rubisco small subunit, which in turn assembles with the large subunit as it is released from chaperonins.  相似文献   
95.
96.

Introduction

Our objectives were to examine mononuclear cell gene expression profiles in patients with systemic lupus erythematosus (SLE) and healthy controls and to compare subsets with and without atherosclerosis to determine which genes’ expression is related to atherosclerosis in SLE.

Methods

Monocytes were obtained from 20 patients with SLE and 16 healthy controls and were in vitro-differentiated into macrophages. Subjects also underwent laboratory and imaging studies to evaluate for subclinical atherosclerosis. Whole-genome RNA expression microarray was performed, and gene expression was examined.

Results

Gene expression profiling was used to identify gene signatures that differentiated patients from controls and individuals with and without atherosclerosis. In monocytes, 9 out of 20 patients with SLE had an interferon-inducible signature compared with 2 out of 16 controls. By looking at gene expression during monocyte-to-macrophage differentiation, we identified pathways which were differentially regulated between SLE and controls and identified signatures based on relevant intracellular signaling molecules which could differentiate SLE patients with atherosclerosis from controls. Among patients with SLE, we used a previously defined 344-gene atherosclerosis signature in monocyte-to-macrophage differentiation to identify patient subgroups with and without atherosclerosis. Interestingly, this signature further classified patients on the basis of the presence of SLE disease activity and cardiovascular risk factors.

Conclusions

Many genes were differentially regulated during monocyte-to-macrophage differentiation in SLE patients compared with controls. The expression of these genes in mononuclear cells is important in the pathogenesis of SLE, and molecular profiling using gene expression can help stratify SLE patients who may be at risk for development of atherosclerosis.  相似文献   
97.
Pleckstrin homology-like domain family A member 2 (PHLDA2) is a maternally expressed imprinted gene whose elevated expression has been linked to fetal growth restriction in a number of human studies. In mice, Phlda2 negatively regulates placental growth and limits the accumulation of placental glycogen. We previously reported that a three-copy transgene spanning the Phlda2 locus drove a fetal growth restriction phenotype late in gestation, suggesting a causative role for PHLDA2 in human growth restriction. However, in this mouse model, Phlda2 was overexpressed by fourfold, alongside overexpression of a second imprinted gene, Slc22a18. Here, we genetically isolate the role of Phlda2 in driving late fetal growth restriction in mice. We furthermore show that this Phlda2-driven growth restriction is asymmetrical, with a relative sparing of the brain, followed by rapid catch-up growth after birth, classic features of placental insufficiency. Strikingly, fetal growth restriction showed strain-specific differences, being apparent on the 129S2/SvHsd (129) genetic background and absent on the C57BL6 (BL6) background. A key difference between these two strains is the placenta. Specifically, BL6 placentae possess a more extensive endocrine compartment and substantially greater stores of placental glycogen. Taken together, these data support a direct role for elevated Phlda2 in limiting fetal growth but also suggest that growth restriction only manifests when there is limited placental reserve. These findings should be taken into account in interpreting the results from human studies.KEY WORDS: Phlda2, Fetal growth restriction, Asymmetric  相似文献   
98.
Exposure to contaminated soil and dust is an important pathway in human health risk assessment. Physical and chemical characteristics and biological factors determine the bioaccessibility/bioavailability of soil and dust contaminants. Within a single sample, contamination may arise from multiple sources of toxic elements that may exist as different species that impact bioavailability. In turn, the bioaccessibility/bioavailability of soil and dust contaminants directly impacts human health risk. Research efforts focusing on development and application of in vitro and in vivo methods to measure the bioaccessibility/bioavailability of metal-contaminated soils have advanced in recent years. The objective of this workshop was to focus on developments in assessing the bioaccessibility/bioavailability of arsenic-contaminated soils, metals’ contamination in urban Canadian residences and potential children's exposures to toxic elements in house dust, an urban community-based study (i.e., West Oakland Residential Lead Assessment), bioavailability studies of soil cadmium, chromium, nickel, and mercury and human exposures to contaminated Brownfield soils. These presentations covered issues related to human health and bioavailability along with the most recent studies on community participation in assessing metals’ contamination, studies of exposures to residential contamination, and in vitro and in vivo methods development for assessing the bioaccessibility/bioavailability of metals in soils and dusts.  相似文献   
99.
The PI 3-kinase (PI 3-K) signaling pathway is essential for Schwann cell myelination. Here we have characterized PI 3-K effectors activated during myelination by probing myelinating cultures and developing nerves with an antibody that recognizes phosphorylated substrates for this pathway. We identified a discrete number of phospho-proteins including the S6 ribosomal protein (S6rp), which is down-regulated at the onset of myelination, and N-myc downstream-regulated gene-1 (NDRG1), which is up-regulated strikingly with myelination. We show that type III Neuregulin1 on the axon is the primary activator of S6rp, an effector of mTORC1. In contrast, laminin-2 in the extracellular matrix (ECM), signaling through the α6β4 integrin and Sgk1 (serum and glucocorticoid-induced kinase 1), drives phosphorylation of NDRG1 in the Cajal bands of the abaxonal compartment. Unexpectedly, mice deficient in α6β4 integrin signaling or Sgk1 exhibit hypermyelination during development. These results identify functionally and spatially distinct PI 3-K pathways: an early, pro-myelinating pathway driven by axonal Neuregulin1 and a later-acting, laminin–integrin-dependent pathway that negatively regulates myelination.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号