首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   493篇
  免费   25篇
  2022年   4篇
  2021年   7篇
  2020年   2篇
  2019年   7篇
  2018年   8篇
  2017年   7篇
  2016年   12篇
  2015年   19篇
  2014年   14篇
  2013年   30篇
  2012年   28篇
  2011年   30篇
  2010年   18篇
  2009年   19篇
  2008年   25篇
  2007年   28篇
  2006年   25篇
  2005年   26篇
  2004年   21篇
  2003年   21篇
  2002年   25篇
  2001年   11篇
  2000年   7篇
  1999年   8篇
  1998年   4篇
  1997年   7篇
  1995年   6篇
  1994年   6篇
  1993年   2篇
  1992年   7篇
  1991年   4篇
  1990年   5篇
  1989年   8篇
  1988年   6篇
  1987年   2篇
  1986年   6篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1982年   5篇
  1981年   4篇
  1979年   4篇
  1978年   3篇
  1974年   3篇
  1973年   5篇
  1972年   5篇
  1969年   1篇
  1968年   2篇
  1967年   2篇
  1966年   1篇
排序方式: 共有518条查询结果,搜索用时 15 毫秒
151.
The study of the ability of chemotherapeutic agents and/or ionizing radiation (IR) to induce cell death in tumor cells is essential for setting up new and more efficient therapies against human cancer. Since drug and ionizing radiation resistance is an impediment to successful chemotherapy against cancer, we wanted to check if etoposide/ionizing radiation combined treatment could have a synergic effect to improve cell death in K562, a well-known human erythroleukemia ionizing radiation resistant cell line. In this study, we examined the role played by JNK/SAPK, p53, and mitochondrial pathways in cell death response of K562 cells to etoposide and IR treatment. Our results let us suppose that the induction of cell death, already evident in 15 Gy exposed cells, mainly in 15 Gy plus etoposide, may be mediated by JNK/SAPK pathway. Moreover, p53 is a potential substrate for JNK and may act as a JNK target for etoposide and ionizing radiation. Thus further investigation on these and other molecular mechanisms underlying the cell death response following etoposide and ionizing radiation exposure could be useful to overcome resistance mechanisms in tumor cells.  相似文献   
152.
The transport pathways for dibasic amino acids were investigated in brush border membrane vesicles (BBMV) from the anterior-middle (AM) and posterior (P) regions of Bombyx mori midgut. In the absence of K(+), a low-affinity saturable transport of arginine in both AM- and P-BBMV (K(m) 1.01 mM, V(max) 4.07 nmol/7s/mg protein and K(m) 1.38 mM, V(max) 2.26 nmol/7s/mg protein, respectively) was detected. Arginine influx was dependent on the membrane electrical potential (Deltapsi) and increased raising the alkalinity of the external medium from pH 7.2 to 10.6. Competition experiments indicated the following order of substrate affinity: arginine, homoarginine, N(G)-monomethylarginine, N(G)-nitroarginine>lysine>ornithine>cysteine>methionine. Leucine, valine and BCH (2-amino-2-norbornanecarboxylic acid) did not inhibit arginine influx. In the presence of external K(+), the influx of arginine as a function of arginine concentration fitted to a complex saturation kinetics compatible with both a low-affinity and a high-affinity component. The latter (K(m) 0.035 mM, V(max) 2.54 nmol/7s/mg protein) was fully characterized. The influx rate had an optimum at pH 8.8, was strongly affected by Deltapsi and was homogeneous along the midgut. The substrate affinity rank was: homoarginine>arginine, N(G)-monomethylarginine>cysteine, lysine>N(G)-nitroarginine>ornithine>methionine. Leucine and amino acids with a hydrophobic side chain were not accepted. This system is also operative in the absence of potassium, with the same order of specificity but a very low activity. Lysine influx is mediated by two more transport systems, the leucine uniport and the K(+)/leucine symport specific for amino acids with a hydrophobic side chain that recognizes lysine at extravesicular pH values (pH(out)) exceeding 9. Both the uniport and the symport differ from the cationic transport systems so far identified in mammals because they are unaffected by N-ethylmaleimide, have no significant affinity for neutral amino acids in the presence of the cation and show a striking difference in their optimum pH.  相似文献   
153.
The microsomal enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase and the low density lipoprotein (LDL) receptor pathway carry out a key role on cholesterol homeostasis in eucaryotic cells. The HMG-CoA reductase is sensitive to oxidative inactivation and to phosphorylation by many kinases that are able to inactivate the protein and increase its susceptibility to proteolysis. We previously demonstrated that a calf thymus Cu,Zn SOD affects cholesterol metabolism. This protein binds with rat hepatocyte cell membrane by a specific surface membrane receptor. The involvement of Cu,Zn SOD in cholesterol metabolism is confirmed further by the presence of this antioxidant enzyme in circulating serum lipoproteins. We studied the effect of native human Cu,Zn SOD, metal-free SOD (apo SOD), and SOD-inactivated with hydrogen peroxide on cholesterol metabolism in human hepatocarcinoma HepG2 cells. Results showed that all forms of SODs used, at the concentration of 150 ng/ml, are able to affect cholesterol metabolism decreasing both HMG-CoA reductase activity and its protein levels; this inhibitory effect is accompanied by reduced cholesterol synthesis measured as [14C]acetate incorporation into [14C]cholesterol and by an increased [125I]LDL binding to HepG2 cells. Furthermore, the inhibitory effect of Cu,Zn SOD on cholesterol synthesis was completely abolished when the cells were incubated with Cu,Zn SOD in the presence of bisindoilmaleimide (BDM), an inhibitor of protein kinase C (PKC); moreover, we demonstrated that Cu,Zn SOD as well as apo SOD was able to increase PKC activity. Overall, data demonstrate that Cu,Zn SOD affects cholesterol metabolism independently from its dismutase activity and its metal content and that the inhibitory action on cholesterol synthesis is mediated by an activation of protein kinase C.  相似文献   
154.
Pompe disease is an inherited metabolic disorder due to the deficiency of the lysosomal acid α-glucosidase (GAA). The only approved treatment is enzyme replacement therapy with the recombinant enzyme (rhGAA). Further approaches like pharmacological chaperone therapy, based on the stabilising effect induced by small molecules on the target enzyme, could be a promising strategy. However, most known chaperones could be limited by their potential inhibitory effects on patient’s enzymes. Here we report on the discovery of novel chaperones for rhGAA, L- and D-carnitine, and the related compound acetyl-D-carnitine. These drugs stabilise the enzyme at pH and temperature without inhibiting the activity and acted synergistically with active-site directed pharmacological chaperones. Remarkably, they enhanced by 4-fold the acid α-glucosidase activity in fibroblasts from three Pompe patients with added rhGAA. This synergistic effect of L-carnitine and rhGAA has the potential to be translated into improved therapeutic efficacy of ERT in Pompe disease.  相似文献   
155.
The muscular system in the posterior sucker of Branchiobdella pentodonta Whit. has circular, longitudinal and radial fibers. In the anterior sucker, which has circular and longitudinal fibers, the muscle system is scarce. Concentric fibers are found around the mouth. In both suckers the glandular elements form voluminous complexes secreting mucus for attachment to the substrate. Suckers show neuromuscular junctions and three distinct types of neuroglandular junctions: one with typical neurosecretory granules, one with larger neurosecretory granules produced by cells located at the origin of the segmental nerves, and one with presynaptic vesicles. The second type is peculiar to the posterior sucker. A comparison is made between suckers of Branchiobdella and those of leeches.  相似文献   
156.
On‐column stopped flow multidimensional HPLC (sfMDHPLC) and dynamic high‐performance liquid chromatography were applied to investigate the influence of alkyl substituents at the sulfonamidic and amino moieties of benzothiadiazine 1,1‐dioxide derivatives on hydrolysis and enantiomerization rate constants. The data obtained indicate the presence of pyrrolo substituent at the 3,4 positions on benzothiadiazine rings inhibits the hydrolysis, whereas the enantiomerization occurs in acidic medium. Hydrolysis rates are quite similar for the two benzothiadiazines methyl substituted to nitrogen at 2‐ and 4‐positions. Conversely, enantiomerization rate of 4‐N‐methyl substituted is significantly higher than 2‐N‐methyl substituted. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
157.
The equilibrium binding affinity of receptor-ligand or antibody-antigen pairs may be modulated by protonation of histidine side-chains, and such pH-dependent mechanisms play important roles in biological systems, affecting molecular uptake and trafficking. Here, we aimed to manipulate cellular transport of single-chain antibodies (scFvs) against the transferrin receptor (TfR) by engineering pH-dependent antigen binding. An anti-TfR scFv was subjected to histidine saturation mutagenesis of a single CDR. By employing yeast surface display with a pH-dependent screening pressure, scFvs having markedly increased dissociation from TfR at pH 5.5 were identified. The pH-sensitivity generally resulted from a central cluster of histidine residues in CDRH1. When soluble, pH-sensitive, scFv clone M16 was dosed onto live cells, the internalized fraction was 2.6-fold greater than scFvs that lacked pH-sensitive binding and the increase was dependent on endosomal acidification. Differences in the intracellular distribution of M16 were also observed consistent with an intracellular decoupling of the scFv M16-TfR complex. Engineered pH-sensitive TfR binding could prove important for increasing the effectiveness of TfR-targeted antibodies seeking to exploit endocytosis or transcytosis for drug delivery purposes.  相似文献   
158.
159.
Cell division protein FtsZ cooperatively self-assembles into straight filaments when bound to GTP. A set of conformational changes that are linked to FtsZ GTPase activity are involved in the transition from straight to curved filaments that eventually disassemble. In this work, we characterized the fluorescence of single Trp mutants as a reporter of the predicted conformational changes between the GDP- and GTP-states of Escherichia coli FtsZ. Steady-state fluorescence characterization showed the Trp senses different environments and displays low solvent accessibility. Time-resolved fluorescence data indicated that the main conformational changes in FtsZ occur at the interaction surface between the N and C domains, but also minor rearrangements were detected in the bulk of the N domain. Surprisingly, despite its location near the bottom protofilament interface at the C domain, the Trp 275 fluorescence lifetime did not report changes between the GDP and GTP states. The equilibrium unfolding of FtsZ features an intermediate that is stabilized by the nucleotide bound in the N-domain as well as by quaternary protein–protein interactions. In this context, we characterized the unfolding of the Trp mutants using time-resolved fluorescence and phasor plot analysis. A novel picture of the structural transition from the native state in the absence of denaturant, to the solvent-exposed unfolded state is presented. Taken together our results show that conformational changes between the GDP and GTP states of FtsZ, such as those observed in FtsZ unfolding, are restricted to the interaction surface between the N and C domains.  相似文献   
160.

Introduction

Although cetuximab and panitumumab show an increased efficacy for patients with KRAS-NRAS-BRAF and PI3KCA wild-type metastatic colorectal cancer, primary resistance occurs in a relevant subset of molecularly enriched populations.

Patients and Methods

We evaluated the outcome of 68 patients with advanced colorectal cancer and RAS, BRAF and PI3KCA status according to ALK gene status (disomic vs. gain of ALK gene copy number – defined as mean of 3 to 5 fusion signals in ≥10% of cells). All consecutive patients received cetuximab and irinotecan or panitumumab alone for chemorefractory disease.

Results

No ALK translocations or amplifications were detected. ALK gene copy number gain was found in 25 (37%) tumors. Response rate was significantly higher in patients with disomic ALK as compared to those with gain of gene copy number (70% vs. 32%; p = 0.0048). Similarly, progression-free survival was significantly different when comparing the two groups (6.7 vs. 5.3 months; p = 0.045). A trend was observed also for overall survival (18.5 vs. 15.6 months; p = 0.885).

Conclusion

Gain of ALK gene copy number might represent a negative prognostic factor in mCRC and may have a role in resistance to anti-EGFR therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号