全文获取类型
收费全文 | 292篇 |
免费 | 13篇 |
专业分类
305篇 |
出版年
2022年 | 2篇 |
2021年 | 6篇 |
2020年 | 2篇 |
2019年 | 6篇 |
2018年 | 7篇 |
2017年 | 7篇 |
2016年 | 8篇 |
2015年 | 14篇 |
2014年 | 11篇 |
2013年 | 23篇 |
2012年 | 20篇 |
2011年 | 22篇 |
2010年 | 11篇 |
2009年 | 14篇 |
2008年 | 14篇 |
2007年 | 21篇 |
2006年 | 20篇 |
2005年 | 18篇 |
2004年 | 14篇 |
2003年 | 13篇 |
2002年 | 16篇 |
2001年 | 2篇 |
1999年 | 3篇 |
1998年 | 2篇 |
1997年 | 5篇 |
1996年 | 1篇 |
1995年 | 5篇 |
1994年 | 4篇 |
1993年 | 1篇 |
1992年 | 2篇 |
1990年 | 3篇 |
1989年 | 2篇 |
1985年 | 1篇 |
1982年 | 1篇 |
1981年 | 2篇 |
1979年 | 1篇 |
1973年 | 1篇 |
排序方式: 共有305条查询结果,搜索用时 6 毫秒
31.
Martha Elisa Vazquez‐Memije Teresa Rizza Maria Chiara Meschini Claudia Nesti Filippo Maria Santorelli Rosalba Carrozzo 《Journal of cellular biochemistry》2009,106(5):878-886
The smallest rotary motor of living cells, F0F1‐ATP synthase, couples proton flow—generated by the OXPHOS system—from the intermembrane space back to the matrix with the conversion of ADP to ATP. While all mutations affecting the multisubunit complexes of the OXPHOS system probably impact on the cell's output of ATP, only mutations in complex V can be considered to affect this output directly. So far, most of the F0F1‐ATP synthase variations have been detected in the mitochondrial ATPase6 gene. In this study, the four most frequent mutations in the ATPase6 gene, namely L156R, L217R, L156P, and L217P, are studied for the first time together, both in primary cells and in cybrid clones. Arginine (“R”) mutations were associated with a much more severe phenotype than Proline (“P”) mutations, in terms of both biochemical activity and growth capacity. Also, a threshold effect in both “R” mutations appeared at 50% mutation load. Different mechanisms seemed to emerge for the two “R” mutations: the F1 seemed loosely bound to the membrane in the L156R mutant, whereas the L217R mutant induced low activity of complex V, possibly the result of a reduced rate of proton flow through the A6 channel. J. Cell. Biochem. 106: 878–886, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
32.
Papis E Bernardini G Gornati R Menegola E Prati M 《Gene expression patterns : GEP》2007,7(1-2):137-142
The triazole derivative Triadimefon (FON) is a systemic fungicide used to control powdery mildews, rusts, and other fungal pests. Some data have already been published about the teratogenic activity of this compound: craniofacial malformations were found in mouse, rat, and Xenopus laevis embryos exposed to FON. These alterations were correlated to defective branchial arch development possibly caused by abnormal neural crest cell (NCC) migration into the branchial mesenchyme. As the migration of NCCs is controlled by the HOX code and by an anteroposterior retinoic acid (RA) gradient, we analyzed the expression of CYP26, a key enzyme in RA metabolism, following FON exposure. The increased expression of this gene and the ability of citral (a RA inhibitor) to reduce the teratogenic effects of the fungicide support the notion that endogenous RA is involved in the mechanism of action of FON. Moreover, by in situ hybridization, we studied the effects of FON exposure at gastrula stage on the expression of some genes involved in craniofacial development, hindbrain patterning, and NCC migration. We observed abnormal localization of xCRABP, Hoxa2 and Xbap signal expression at the level of migrating NCC domains, whereas in the hindbrain, we did not find any alteration in Krox20 and Hoxa2 expression. 相似文献
33.
Andrés Marcoleta Macarena Marín Gabriela Mercado José María Valpuesta Octavio Monasterio Rosalba Lagos 《Journal of bacteriology》2013,195(17):3995-4004
Microcin E492, a channel-forming bacteriocin with the ability to form amyloid fibers, is exported as a mixture of two forms: unmodified (inactive) and posttranslationally modified at the C terminus with a salmochelin-like molecule, which is an essential modification for conferring antibacterial activity. During the stationary phase, the unmodified form accumulates because expression of the maturation genes mceIJ is turned off, and microcin E492 is rapidly inactivated. The aim of this work was to demonstrate that the increase in the proportion of unmodified microcin E492 augments the ability of this bacteriocin to form amyloid fibers, which in turn decreases antibacterial activity. To this end, strains with altered proportions of the two forms were constructed. The increase in the expression of the maturation genes augmented the antibacterial activity during all growth phases and delayed the loss of activity in the stationary phase, while the ability to form amyloid fibers was markedly reduced. Conversely, a higher expression of microcin E492 protein produced concomitant decreases in the levels of the modified form and in antibacterial activity and a substantial increase in the ability to form amyloid fibers. The same morphology for these fibers, including those formed by only the unmodified version, was observed. Moreover, seeds formed using exclusively the nonmodified form were remarkably more efficient in amyloid formation with a shorter lag phase, indicating that the nucleation process is probably improved. Unmodified microcin E492 incorporation into amyloid fibers was kinetically more efficient than the modified form, probably due to the existence of a conformation that favors this process. 相似文献
34.
Pezzini F Gismondi F Tessa A Tonin P Carrozzo R Mole SE Santorelli FM Simonati A 《Biochemical and biophysical research communications》2011,416(1-2):159-164
Neuronal ceroid lipofuscinosis (NCL) are a group of progressive neurodegenerative disorders of childhood, characterized by the endo-lysosomal storage of autofluorescent material. Impaired mitochondrial function is often associated with neurodegeneration, possibly related to the apoptotic cascade. In this study we investigated the possible effects of lysosomal accumulation on the mitochondrial compartment in the fibroblasts of two NCL forms, CLN1 and CLN6. Fragmented mitochondrial reticulum was observed in all cells by using the intravital fluorescent marker Mitotracker, mainly in the perinuclear region. This was also associated with intense signal from the lysosomal markers Lysotracker and LAMP2. Likewise, mitochondria appeared to be reduced in number and shifted to the cell periphery by electron microscopy; moreover the mitochondrial markers VDCA and COX IV were reduced following quantitative Western blot analysis. Whilst there was no evidence of increased cell death under basal condition, we observed a significant increase in apoptotic nuclei following Staurosporine treatment in CLN1 cells only. In conclusion, the mitochondrial compartment is affected in NCL fibroblasts invitro, and CLN1 cells seem to be more vulnerable to the negative effects of stressed mitochondrial membrane than CLN6 cells. 相似文献
35.
del Pozo Yauner L Ortiz E Sánchez R Sánchez-López R Güereca L Murphy CL Allen A Wall JS Fernández-Velasco DA Solomon A Becerril B 《Proteins》2008,72(2):684-692
Light chain-associated amyloidosis is a fatal disease characterized by the aggregation and pathologic deposition of monoclonal light chain-related fragments as amyloid fibrils in organs or tissues throughout the body. Notably, it has been observed that proteins encoded by the lambda variable light chain (V(L)) gene segment 6a are invariably associated with amyloid deposition; however, the contribution of the gene to this phenomenon has not been established. In this regard, we have determined the thermodynamic stability and kinetics of in vitro fibrillogenesis of a recombinant (r) V(L) protein, designated 6aJL2, which contains the predicted sequences encoded by the 6a and JL2 germline genes. Additionally, we studied a 6a mutant (6aJL2-Arg25Gly), that is present in approximately 25% of all amyloid-associated lambda6 light chains. Remarkably, the wild-type 6aJL2 protein was more stable than were all known amyloidogenic kappa and lambda light chains for which stability parameters are available; more importantly, it was even more so (and less fibrillogenic) than the only clinically proven nonamyloidogenic lambda6 protein, Jto. Conversely, the mutated 6aJL2-R25G molecule was considerably less stable and more fibrillogenic than was the native 6aJL2. Our data indicate that the propensity of lambda6 light chains to form amyloid can not be attributed to thermodynamic instability of the germline-encoded Vlambda6 domain, but rather, is dependent on sequence alterations that render such proteins amyloidogenic. 相似文献
36.
Tempera I Cipriani R Campagna G Mancini P Gatti A Guidobaldi L Pantellini F Mandosi E Sensi M Quesada P Mario UD D'Erme M Morano S 《Journal of cellular physiology》2005,205(3):387-392
Poly(ADP-ribose)polymerase (PARP-1), a nuclear enzyme activated by DNA strand breaks, is involved in DNA repair, aging, inflammation, and neoplastic transformation. In diabetes, reactive oxygen and nitrogen species occurring in response to hyperglycemia cause DNA damages and PARP-1 activation. Because circulating mononuclear cells (MNCs) are involved in inflammation mechanisms, these cells were chosen as the experimental model to evaluate PARP-1 levels and activity in patients with type 2 diabetes. MNCs were isolated from 25 diabetic patients (18 M, 7 F, age, 63.5 +/- 10.2 years, disease duration 17.7 +/- 8.2 years) and 11 age and sex matched healthy controls. PARP-1 expression and activity were analyzed by semi-quantitative PCR, Western and activity blot, and immunofluorescence microscopy. PARP-1-mRNA expression was increased in MNCs from all diabetic patients versus controls (P < 0.01), whereas PARP-1 content and activity were significantly lower in diabetic patients (P < 0.0001). To verify whether low PARP-1 levels and activity were due to a proteolytic effect of caspase-3 like, the latter activation was measured by a fluorimetric assay. Caspase-3 activity in MNCs was significantly higher in diabetic patients versus control subjects (P < 0.0001). The different PARP-1 behavior in MNCs from patients with type 2 diabetes could therefore be responsible for the abnormal inflammation and infection responses in diabetes. 相似文献
37.
38.
Rosalba Esquivel-Cote Rosa María Ramírez-Gama Guadalupe Tsuzuki-Reyes Alma Orozco-Segovia Pilar Huante 《Plant and Soil》2010,337(1-2):65-75
In this study we evaluated the ability of two wild strains of Azospirillum, A. lipoferum AZm5 and A. brasilense VS9, to produce ACC deaminase. We tested the effects of a deficiency and medium doses of nitrogenous fertilizers on the growth and physiology of tomato plants (Lycopersicon esculentum Mill cv. ACE VF55) inoculated with both Azospirillum strains independently. Tomato plants were evaluated by root elongation assay and grown in pot soil culture with different nitrogen levels (0 kg N ha–1 and 170 kg N ha–1). The root:shoot ratio (R:S) and some ecophysiological traits were determined after 42 days of plant growth. Results showed very different physiological characteristics in both strains. We found three relevant aspects related to the AZm5 strain: it produces high amounts of cytokinins, it contains the gene acdS, which encodes ACC deaminase, and it promotes plant growth. We conclude that AZm5 maybe useful to increase N uptake in N-deficient soil by production of cytokinins and the promotion of ACC deaminase activity, which favored leaf expansion and higher leaf N investment. Therefore, for tomato culture, a simultaneous biofertilization with AZm5 and a relatively low fertilization with N (170 kg N ha–1) to promote AZm5 activity could be advantageous. 相似文献
39.
Available methods to measure mitochondrial [Ca(2+)] ([Ca(2+)](M)) include both targeted proteins and fluorescent dyes. Targeted proteins usually report much higher [Ca(2+)](M) values than fluorescent dyes, up to two orders of magnitude. However, we show here that the low-Ca(2+)-affinity dye rhod-5N provides [Ca(2+)](M) values similar to those reported by targeted aequorin, suggesting that the discrepancies are mainly due to the higher Ca(2+)-affinity of the fluorescent dyes used. We find rhod-5N has an apparent in situ intramitochondrial Kd around 0.5mM. Addition of Ca(2+) buffers containing between 4.5 and 10μM [Ca(2+)] to permeabilized cells loaded with rhod-5N induced increases in calibrated [Ca(2+)](M) up to the 100μM-1mM range, which were dependent on mitochondrial membrane potential. Ca(2+) release from mitochondria was largely dependent on [Na(+)]. We have then used rhod-5N loaded cells to investigate the [Ca(2+)](M) response to agonist stimulation at the single-cell and subcellular level. The [Ca(2+)](M) peaks induced by histamine varied by nearly 10-fold among different cells, with a mean about 25μM. In the presence of the Ca(2+) uniporter stimulator kaempferol, the [Ca(2+)](M) peaks induced by histamine were also highly variable, and the mean [Ca(2+)](M) peak was 3-fold higher. Simultaneous measurement of cytosolic and mitochondrial [Ca(2+)] peaks showed little correlation among the heights of the peaks in both compartments. Studying the [Ca(2+)](M) peaks at the subcellular level, we found significant heterogeneities among regions in the same cell. In particular, the [Ca(2+)](M) increase in mitochondrial regions close to the nucleus was more than double that of mitochondrial regions far from the nucleus. 相似文献
40.
Báez-Flores ME Troncoso-Rojas R Osuna MA Domínguez MR Pryor B Tiznado-Hernández ME 《Microbiological research》2011,166(7):566-577
The molecular mechanism of the fungal tolerance phenotype to fungicides is not completely understood. This knowledge would allow for the development of environmentally friendly strategies for the control of fungal infection. With the goal of determining genes induced by 2p-ITC, a forward suppressive subtractive hybridization was performed using cDNAs from ITC-treated Alternaria alternata as a “tester” and from untreated fungus as a “driver.” Using this approach, a library containing 102 ESTs was generated that resulted in 50 sequences after sequence assembly (17 contigs and 33 singletons). Blastx analysis revealed that 38% and 40% of the sequences showed significant similarity with known and hypothetical proteins, respectively, whereas 18% were not similar to known genes. These last sequences could represent novel genes that play an unknown role in the molecular responses of fungi during adaptation to 2p-ITC. Clones similar to opsins, ABC transporters, calmodulin, ATPases and SNOG proteins were identified. Using real-time RT-PCR analysis, significant inductions of an ABC transporter and a Ca++ ATPase during 2p-ITC treatment were discovered. These results suggest that the fungal resistance phenotype to 2p-ITC involves calcium ions and 2p-ITC efflux via an ABC transporter. 相似文献