首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   597篇
  免费   46篇
  643篇
  2023年   3篇
  2022年   15篇
  2021年   17篇
  2020年   14篇
  2019年   7篇
  2018年   11篇
  2017年   10篇
  2016年   26篇
  2015年   45篇
  2014年   46篇
  2013年   55篇
  2012年   28篇
  2011年   34篇
  2010年   36篇
  2009年   35篇
  2008年   37篇
  2007年   26篇
  2006年   22篇
  2005年   17篇
  2004年   18篇
  2003年   10篇
  2002年   14篇
  2001年   10篇
  2000年   12篇
  1999年   10篇
  1998年   10篇
  1997年   4篇
  1996年   6篇
  1994年   3篇
  1993年   6篇
  1992年   4篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   4篇
  1985年   5篇
  1984年   2篇
  1982年   2篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1972年   3篇
  1971年   2篇
  1967年   1篇
  1958年   1篇
排序方式: 共有643条查询结果,搜索用时 15 毫秒
51.
The ribosome decodes mRNA by monitoring the geometry of codon–anticodon base-pairing using a set of universally conserved 16S rRNA nucleotides within the conformationally dynamic decoding site. By applying single-molecule FRET and X-ray crystallography, we have determined that conditional-lethal, streptomycin-dependence mutations in ribosomal protein S12 interfere with tRNA selection by allowing conformational distortions of the decoding site that impair GTPase activation of EF-Tu during the tRNA selection process. Distortions in the decoding site are reversed by streptomycin or by a second-site suppressor mutation in 16S rRNA. These observations encourage a refinement of the current model for decoding, wherein ribosomal protein S12 and the decoding site collaborate to optimize codon recognition and substrate discrimination during the early stages of the tRNA selection process.  相似文献   
52.
53.
54.
Northern hemisphere rockweeds (Fucus) are thought to have evolved in the North Pacific and then spread to the North Atlantic following the opening of the Bering Strait. They have dispersed and widely speciated in the North Atlantic and its tributary seas. Fucus distichus is likely near the ancestral member of this genus, and studies have shown that there are several species/subspecies in this complex (i.e. F. evanescens and F. gardneri). We used phylogenetic and haplotype analyses to test the phylogenetic relationships and biogeography of F. distichus. Our data and subsequent analyses demonstrate that, unlike previous studies that lacked samples from an extensive geographical area of the Arctic and Subarctic, there is a distinct Arctic haplotype that is the source of subspecies in both the North Pacific and North Atlantic. Fucus distichus occupies a low tide zone habitat, and in Arctic/Subarctic regions it is adapted to the severe stress of sea ice coverage and disturbance during many months per year. We hypothesize that the very large geographic area of Arctic and Subarctic rocky shores available to this species during interglacials, supported by large Arctic/Subarctic fringe areas as well as unglaciated refugia during glacial cycles, provided a robust population and gene pool (described by the Thermogeographic Model). This gene pool dilutes that of the more fragmented and area-limited Temperate/Boreal area populations when they are brought together during glacial cycles. We suggest that similar subspecies complexes for a variety of Arctic/Subarctic shore biota should be examined further in this context, rather than arbitrarily being split up into numerous species.  相似文献   
55.
Campylobacter spp. are responsible for a large number of the bacterial food poisoning cases worldwide. Despite being sensitive to oxygen and nutritionally fastidious, Campylobacter spp. are able to survive in food processing environments and reach consumers in sufficient numbers to cause disease. To investigate Campylobacter persistence on processed chicken, exudates from chickens produced for consumer sale were collected and sterilized. Two types of exudates from chicken products were collected: enhanced, where a marinade was added to the chickens during processing, and nonenhanced, where no additives were added during processing. Exudates from enhanced chicken products examined in this study contained a mixture of polyphosphates. Exudate samples were inoculated with Campylobacter jejuni or Campylobacter coli strains and incubated under a range of environmental conditions, and viable bacteria present in the resultant cultures were enumerated. When incubated at 42°C in a microaerobic environment, exudates from enhanced chicken products resulted in increased survival of C. jejuni and C. coli compared with that in nonenhanced exudates in the range of <1 to >4 log CFU/ml. Under more relevant food storage conditions (4°C and normal atmosphere), the exudates from enhanced chicken products also demonstrated improved Campylobacter survival compared with that in nonenhanced exudates. Polyphosphates present in the enhanced exudates were determined to be largely responsible for the improved survival observed when the two types of exudates were compared. Therefore, polyphosphates used to enhance chicken quality aid in sustaining the numbers of Campylobacter bacteria, increasing the opportunity for disease via cross-contamination or improperly cooked poultry.Campylobacter species are the major causative agent of food-borne gastrointestinal bacterial infections in the developed world (6, 11, 21). Poultry products are a major source for the introduction of Campylobacter into the food supply (15, 16). Improperly cooked poultry and cross-contamination of other foods by raw poultry are common methods for transmission of Campylobacter to humans (5). However, Campylobacter spp. are nutritionally fastidious organisms that are sensitive to the oxygen levels present in a normal environment (O2 = 20.9%) (21). Therefore, Campylobacter appears an unlikely candidate to persist within poultry processing and storage environments at levels sufficient to cause human disease. This conundrum directly leads to a question: what then are the elements that contribute to the ability of Campylobacter to survive through poultry processing and cold storage?To investigate this question, a food-relevant environment consisting of chicken weepage or exudate can be used to perform survival experiments on Campylobacter species. Strains of Campylobacter jejuni and Campylobacter coli were used for the survival studies since these two species are responsible for the vast majority of human cases of campylobacteriosis (20, 28). Chicken exudate is the fluid that seeps out from processed poultry carcasses and is often found to be contaminated with considerable numbers of Campylobacter bacteria. It is comprised of water, blood, fats, and other materials added to the poultry during processing. Sterilized poultry exudates make for a convenient experimental material that is also relevant to the conditions which Campylobacter will experience as a contaminant of processed poultry (2, 3). Two different types of chicken exudates were collected from commercial producers, one from chickens processed without additives (nonenhanced) and the other from chickens that were treated with a commercial marinade to increase the quality and appeal of the meat at market (enhanced). The commercial poultry marinades contain a significant amount of polyphosphate additives. Polyphosphates comprise a group of food additives that are utilized within poultry processing to enhance the moisture absorbance, color, and flavor and to reduce product shrinkage of poultry (24, 29-32). Polyphosphates have also been shown to have an antimicrobial effect on several different bacterial species (8, 10, 12). The goal of the research was to determine if polyphosphates contribute to the ability of Campylobacter to survive and persist through the supply chain, thus directly increasing the opportunity for Campylobacter-mediated food poisoning of consumers.  相似文献   
56.
57.
58.
Abstract

Microorganisms frequently contaminate jet fuel and cause corrosion of fuel tank metals. In the past, jet fuel contaminants included a diverse group of bacteria and fungi. The most common contaminant was the fungus Hormoconis resinae. However, the jet fuel community has been altered by changes in the composition of the fuel and is now dominated by bacterial contaminants. The purpose of this research was to determine the composition of the microbial community found in fuel tanks containing jet propellant-8 (JP-8) and to determine the potential of this community to cause corrosion of aluminum alloy 2024 (AA2024). Isolates cultured from fuel tanks containing JP-8 were closely related to the genus Bacillus and the fungi Aureobasidium and Penicillium. Biocidal activity of the fuel system icing inhibitor diethylene glycol monomethyl ether is the most likely cause of the prevalence of endospore forming bacteria. Electrochemical impedance spectroscopy and metallographic analysis of AA2024 exposed to the fuel tank environment indicated that the isolates caused corrosion of AA2024. Despite the limited taxonomic diversity of microorganisms recovered from jet fuel, the community has the potential to corrode fuel tanks.  相似文献   
59.
The P-type CPX-ATPases are responsible for the transport of heavy metal ions in archaea, bacteria, and eukaryotes. We have chosen one of the two CPX-ATPases of the thermophile Sulfolobus solfataricus, CopB (= SSO2896) for the investigation of the molecular mechanism of this integral membrane protein. We recombinately expressed three different soluble domains of this protein (named CopB-A, CopB-B, and CopB-C) in Escherichia coli and purified them to homogeneity. 3D crystals of CopB-B, the 29 kDa catalytic ATP binding/phosphorylation domain were produced, which diffracted to a resolution of 2.2 A. CopB-B has heavy metal stimulated phosphatase activity, which was half maximal in the presence of 80 microM Cu2+. The protein forms a phosphorylated intermediate with the substrate gamma-(32P)-ATP. No specific activation of the polypeptide was observed, when CopB-B phosphatase activity was tested in the presence of the purified CopB-C and CopB-A proteins, which provide the cation binding and the phosphatase domains. We conclude that CopB is a putatively copper translocating ATPase, in which structural elements integrally located in the membrane are required for full, coordinated activation of the catalytic ATP binding domain.  相似文献   
60.
Ribosome biogenesis requires >100 nonribosomal proteins, which are associated with different preribosomal particles. The substrates, the interacting partners, and the timing of action of most of these proteins are largely unknown. To elucidate the functional environment of the putative ATP-dependent RNA helicase Dbp6p from Saccharomyces cerevisiae, which is required for 60S ribosomal subunit assembly, we have previously performed a synthetic lethal screen and thereby revealed a genetic interaction network between Dbp6p, Rpl3p, Nop8p, and the novel Rsa3p. In this report, we extended the characterization of this functional network by performing a synthetic lethal screen with the rsa3 null allele. This screen identified the so far uncharacterized Npa1p (YKL014C). Polysome profile analysis indicates that there is a deficit of 60S ribosomal subunits and an accumulation of halfmer polysomes in the slowly growing npa1-1 mutant. Northern blotting and primer extension analysis shows that the npa1-1 mutation negatively affects processing of all 27S pre-rRNAs and the normal accumulation of both mature 25S and 5.8S rRNAs. In addition, 27SA(2) pre-rRNA is prematurely cleaved at site C(2). Moreover, GFP-tagged Npa1p localizes predominantly to the nucleolus and sediments with large complexes in sucrose gradients, which most likely correspond to pre-60S ribosomal particles. We conclude that Npa1p is required for ribosome biogenesis and operates in the same functional environment of Rsa3p and Dbp6p during early maturation of 60S ribosomal subunits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号