首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2725篇
  免费   160篇
  2023年   22篇
  2022年   33篇
  2021年   66篇
  2020年   55篇
  2019年   53篇
  2018年   109篇
  2017年   87篇
  2016年   105篇
  2015年   97篇
  2014年   104篇
  2013年   192篇
  2012年   201篇
  2011年   223篇
  2010年   147篇
  2009年   94篇
  2008年   167篇
  2007年   160篇
  2006年   152篇
  2005年   120篇
  2004年   106篇
  2003年   87篇
  2002年   112篇
  2001年   42篇
  2000年   65篇
  1999年   30篇
  1998年   20篇
  1997年   12篇
  1996年   9篇
  1995年   13篇
  1994年   9篇
  1993年   9篇
  1992年   22篇
  1991年   18篇
  1990年   13篇
  1989年   22篇
  1988年   15篇
  1987年   6篇
  1985年   8篇
  1984年   6篇
  1983年   6篇
  1982年   5篇
  1981年   8篇
  1978年   5篇
  1977年   4篇
  1975年   5篇
  1973年   5篇
  1971年   4篇
  1969年   3篇
  1968年   3篇
  1966年   4篇
排序方式: 共有2885条查询结果,搜索用时 15 毫秒
41.
Extremophiles - We accessed the culturable mycobiota present in marine sediments at different depths in Antarctica Ocean. Acremonium fusidioides, Penicillium allii-sativi, Penicillium chrysogenum,...  相似文献   
42.
Climate change scenarios predict tropical cyclones will increase in both frequency and intensity, which will escalate the amount of terrestrial run-off and mechanical disruption affecting coastal ecosystems. Bacteria are key contributors to ecosystem functioning, but relatively little is known about how they respond to extreme storm events, particularly in nearshore subtropical regions. In this study, we combine field observations and mesocosm experiments to assess bacterial community dynamics and changes in physicochemical properties during early- and late-season tropical cyclones affecting Okinawa, Japan. Storms caused large and fast influxes of freshwater and terrestrial sediment – locally known as red soil pollution – and caused moderate increases of macronutrients, especially SiO2 and PO43−, with up to 25 and 0.5 μM respectively. We detected shifts in relative abundances of marine and terrestrially derived bacteria, including putative coral and human pathogens, during storm events. Soil input alone did not substantially affect marine bacterial communities in mesocosms, indicating that other components of run-off or other storm effects likely exert a larger influence on bacterial communities. The storm effects were short-lived and bacterial communities quickly recovered following both storm events. The early- and late-season storms caused different physicochemical and bacterial community changes, demonstrating the context-dependency of extreme storm responses in a subtropical coastal ecosystem.  相似文献   
43.
44.
The hermaphroditic marine snail species Haminella solitaria was formerly included in the genus Haminoea, but it was recently assigned to the genus Haminella. The copulatory apparatus in H. solitaria was investigated by light and transmission electron microscopy to obtain additional information about this apparatus in cephalaspidean gastropods and to evaluate the taxonomic relevance of its morphofunctional features in the framework of a new phylogenetic tree of the family Haminoeidae. The copulatory apparatus in H. solitaria consisted of the atrium with a muscular wall and papilla, a seminal duct, and a single‐lobed prostate. Epithelial and subepithelial secretory cells were detected in the proximal and middle region of the atrium wall, and a third type of secretory cell occurred in the distal region of the muscular papilla. The seminal duct was lined by ciliated cells and its muscular wall included some vacuolar cells. The prostate in H. solitaria consisted of lateral pouches surrounding a large central lumen that was filled with spermatozoa. A single type of secretory cell intermingled with ciliated cells formed the epithelium of the prostate. A histological comparison between the copulatory apparatus in H. solitaria and Haminoea navicula revealed substantial differences that support the placement of these two species in different genera, as established by recent molecular studies.  相似文献   
45.
Probiotics and Antimicrobial Proteins - This study aimed to characterize, evaluate toxicity and optimize the conditions for the growth and production of bacteriocin-like substances by Lactobacillus...  相似文献   
46.
Journal of Bioenergetics and Biomembranes - S-adenosylmethionine (AdoMet) predominantly accumulates in tissues and biological fluids of patients affected by liver dysmethylating diseases,...  相似文献   
47.
48.

Mutations in nuclear-encoded protein subunits of the mitochondrial ribosome are an increasingly recognised cause of oxidative phosphorylation system (OXPHOS) disorders. Among them, mutations in the MRPL44 gene, encoding a structural protein of the large subunit of the mitochondrial ribosome, have been identified in four patients with OXPHOS defects and early-onset hypertrophic cardiomyopathy with or without additional clinical features. A 23-year-old individual with cardiac and skeletal myopathy, neurological involvement, and combined deficiency of OXPHOS complexes in skeletal muscle was clinically and genetically investigated. Analysis of whole-exome sequencing data revealed a homozygous mutation in MRPL44 (c.467 T?>?G), which was not present in the biological father, and a region of homozygosity involving most of chromosome 2, raising the possibility of uniparental disomy. Short-tandem repeat and genome-wide SNP microarray analyses of the family trio confirmed complete maternal uniparental isodisomy of chromosome 2. Mitochondrial ribosome assembly and mitochondrial translation were assessed in patient derived-fibroblasts. These studies confirmed that c.467 T?>?G affects the stability or assembly of the large subunit of the mitochondrial ribosome, leading to impaired mitochondrial protein synthesis and decreased levels of multiple OXPHOS components. This study provides evidence of complete maternal uniparental isodisomy of chromosome 2 in a patient with MRPL44-related disease, and confirms that MRLP44 mutations cause a mitochondrial translation defect that may present as a multisystem disorder with neurological involvement.

  相似文献   
49.
Extremophiles - As part of the reconstruction of the Brazilian Antarctic Station on King George Island, three areas of moss carpet were transplanted to minimize the impact of the new facilities on...  相似文献   
50.
This study characterizes the phosphorylated pathway of Ser biosynthesis (PPSB) in Arabidopsis thaliana by targeting phosphoserine phosphatase (PSP1), the last enzyme of the pathway. Lack of PSP1 activity delayed embryo development, leading to aborted embryos that could be classified as early curled cotyledons. The embryo-lethal phenotype of psp1 mutants could be complemented with PSP1 cDNA under the control of Pro35S (Pro35S:PSP1). However, this construct, which was poorly expressed in the anther tapetum, did not complement mutant fertility. Microspore development in psp1.1/psp1.1 Pro35S:PSP1 arrested at the polarized stage. The tapetum from these lines displayed delayed and irregular development. The expression of PSP1 in the tapetum at critical stages of microspore development suggests that PSP1 activity in this cell layer is essential in pollen development. In addition to embryo death and male sterility, conditional psp1 mutants displayed a short-root phenotype, which was reverted in the presence of Ser. A metabolomic study demonstrated that the PPSB plays a crucial role in plant metabolism by affecting glycolysis, the tricarboxylic acid cycle, and the biosynthesis of amino acids. We provide evidence of the crucial role of the PPSB in embryo, pollen, and root development and suggest that this pathway is an important link connecting primary metabolism with development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号