首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   330篇
  免费   15篇
  国内免费   1篇
  2023年   6篇
  2022年   5篇
  2021年   11篇
  2020年   4篇
  2019年   8篇
  2018年   6篇
  2017年   12篇
  2016年   12篇
  2015年   21篇
  2014年   18篇
  2013年   25篇
  2012年   32篇
  2011年   24篇
  2010年   12篇
  2009年   8篇
  2008年   8篇
  2007年   12篇
  2006年   17篇
  2005年   4篇
  2004年   5篇
  2003年   7篇
  2002年   7篇
  2001年   8篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1993年   5篇
  1992年   4篇
  1991年   7篇
  1990年   8篇
  1989年   5篇
  1988年   6篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   6篇
  1980年   1篇
  1977年   1篇
  1976年   3篇
  1975年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有346条查询结果,搜索用时 15 毫秒
51.
In comparison with other Macaronesian Islands (e.g., the Canary Islands), the Cape Verde Islands have received little attention in terms of plant molecular phylogenetic studies, which might also elucidate the general floristic history of this archipelago. The Cape Verdean vascular plant flora (ca. 12% endemics) has traditionally been regarded as relict of a former subtropical Tertiary flora. In contrast, it has been postulated more recently that the flora is much younger and of Pleistocene origin. To test these hypotheses, we have produced molecular phylogenies associated with a molecular clock approach, sampling all nine Cape Verdean endemic Diplotaxis taxa and 21 accessions representing the D. harra complex from across its distributional range. Analyzing three molecular markers from the nuclear and chloroplast genome, we provide evidence that the Cape Verdean endemic Diplotaxis originated from North African D. harra populations in Pleistocene times, putatively linked to the genesis of the (western) Sahara. This adds to the emerging picture that the present Cape Verdean flora is of Pleistocene origin.  相似文献   
52.
Diarrhea is considered as an important cause of morbidity and mortality, even though one of the main reasons of death following diarrhea is initiated by dysentery. In recent years, the consumption of probiotics has been proposed for the treatment of infectious diarrhea. Despite most of the studies on probiotics have focused on acute watery diarrhea, few studies in the field of dysentery have found beneficial effects of probiotics. This study is a randomized double-blind clinical trial. The patients were randomly placed into control and case groups. In the intervention group, the patients received probiotics in the form of Kidilact® sachet, which contained high amounts of 7-strain friendly bacteria strains of Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus bulgaricus, Bifidobacterium infantis, Bifidobacterium breve, and Streptococcus thermophiles. On the other hand, the patients in the control group received placebo sachets on a daily basis for 5 days. It is notable that the treatment protocol of acute dysentery was done on both groups. The results of this study showed significant differences in the duration of blood in diarrhea between probiotic consumers (2.62 days) and the control group (3.16 days) (P value = 0.05). Additionally, significant differences in the average length of hospitalization in probiotic consumers (3.16 days) and control (3.66 days), (P value = 0.02) could be claimed that the consumption of probiotics is effective in reducing the duration of dysentery and diarrhea. The results of this study suggest that the use of probiotics can be effective in reducing the duration of blood in diarrhea. This study was also recorded in the Iran center of clinical trials registration database (IRCT2014060617985N1).  相似文献   
53.
Genome information from model species such as rice can assist in the cloning of genes in a complex genome,such as maize.Here,we identified a maize ortholog of rice GS5 that contributes to kernel development in maize.The genomewide association analysis of the expression levels of ZmGS5,and 15 of its 26 paralogs,identified a trans-regulator on chromosome 7,which was a BAKi-like gene.This gene that we named as ZmBAK1-7 could regulate the expression of ZmGS5 and three of the paralogs.Candidate-gene association analyses revealed that these five genes were associated with maize kernel development-related traits.Linkage analyses also detected that ZmGSs and ZmBAK1-7 co-localized with mapped QTLs.A transgenic analysis of ZmGS5 in Arabidopsis thaliana L.showed a significant increase in seed weight and cell number,suggesting that ZmGS5 may have a conserved function among different plant species that affects seed development.  相似文献   
54.
FP-Class prostaglandin analogs have demonstrated utility for the treatment of glaucoma and ocular hypertension. A series of novel FP prostaglandin analogs was designed to optimize topical ocular activity and reduce ocular side-effects by replacing 13-carbon with oxygen. A facile synthesis was successfully developed for synthesis of the 13-oxa prostaglandins from the commercially available Corey aldehyde benzoate. Among the compounds synthesized, AL-16082 was the most potent prostaglandin FP agonist in vitro. In a prostaglandin FP receptor-linked second-messenger assay, phosphoinositide (PI) turnover, it exhibited a potency value (EC50) of 1.9 nM (78% max. response relative to fluprostenol). The isopropyl ester of AL-16082, compound AL-16049, significantly lowered intraocular pressure (IOP) in the ocular hypertensive monkey eyes by 30%. In the study of acute ocular irritation response in New Zealand albino rabbits, AL-16049 produced lower incidence of hyperemia, swelling, and discharge than PGF (1 μg), and a similar incidence of hyperemia, swelling, and discharge to latanoprost (1.8 μg). AL-16049 also produced no signs of ocular irritation or discomfort in the cat at the doses evaluated.  相似文献   
55.
Retinol-binding protein-4 (RBP4) is an emerging candidate drug target for type 2 diabetes and lipofuscin-mediated macular degeneration. The retinoic acid derivative fenretinide (N-(4-hydroxyphenyl) retinamide; HPR) exerts therapeutic effects in mouse models of obesity, diabetes, and Stargardt’s disease by targeting RBP4. Fenretinide competes with retinoids for RBP4 binding, disrupts RBP4-transthyretin (TTR) complexes, and results in urinary secretion of RBP4 and systemic depletion of retinol. To enable the search for nonretinoid molecules with fenretinide-like activities we developed a HTS-compatible homogeneous TR-FRET assay monitoring the displacement of retinoic acid derivatives from RBP4 in high-density 384-well and 1536-well microtiter plate formats. The retinoid displacement assay proved to be highly sensitive and robust after miniaturization with IC50s for fenretinide and retinol ranging around 50 and 100 nM, respectively, and Z′-factors around 0.7. In addition, a surface plasmon resonance (SPR)-based secondary assay was developed to interrogate small molecule RBP4 binders for their ability to modulate the RBP4-TTR interaction. Finally, a 1.6 × 106 compound library was screened against the retinoid displacement assay. Several potent retinoid competitors were identified that also appeared to disrupt RBP4-TTR complexes. Some of these compounds could potentially serve as valuable tools to further probe RBP4 biology in the future.  相似文献   
56.
57.
During clathrin-mediated endocytosis, dynamin promotes the formation of clathrin-coated vesicles, but its mode of action is unresolved. In a recent study, Macia and colleagues made use of dynasore, a dynamin-specific inhibitor, to show that dynamin plays a dual role in endocytosis: they confirmed that dynamin is involved in detaching fully formed coated pits from the membrane, and also propose a new role for dynamin earlier in the process at the point of invagination.  相似文献   
58.
Arsenic exposure may contribute to disease risk in humans through alterations in the epigenome. Previous studies reported that arsenic exposure is associated with changes in plasma histone concentrations. Posttranslational histone modifications have been found to differ between the brain tissue of human embryos with neural tube defects and that of controls. Our objectives were to investigate the relationships between plasma histone 3 levels, history of having an infant with myelomeningocele, biomarkers of arsenic exposure, and maternal folate deficiency. These studies took place in Bangladesh, a country with high environmental arsenic exposure through contaminated drinking water. We performed ELISA assays to investigate plasma concentration of total histone 3 (H3) and the histone modification H3K27me3. The plasma samples were collected from 85 adult women as part of a case-control study of arsenic and myelomeningocele risk in Bangladesh. We found significant associations between plasma %H3K27me3 levels and risk of myelomeningocele (P<0.05). Mothers with higher %H3K27me3 in their plasma had lower risk of having an infant with myelomeningocele (odds ratio: 0.91, 95% confidence interval: 0.84, 0.98). We also found that arsenic exposure, as estimated by arsenic concentration in toenails, was associated with lower total H3 concentrations in plasma, but only among women with folate deficiency (β = ?9.99, standard error = 3.91, P=0.02). Our results suggest that %H3K27me3 in maternal plasma differs between mothers of infants with myelomeningocele and mothers of infants without myelomeningocele, and may be a marker for myelomeningocele risk. Women with folate deficiency may be more susceptible to the epigenetic effects of environmental arsenic exposure.  相似文献   
59.
NAD+ metabolism plays key roles not only in energy production but also in diverse cellular physiology. Aberrant NAD+ metabolism is considered a hallmark of cancer. Recently, the tumor suppressor p53, a major player in cancer signaling pathways, has been implicated as an important regulator of cellular metabolism. This notion led us to examine whether p53 can regulate NAD+ biosynthesis in the cell. Our search resulted in the identification of nicotinamide mononucleotide adenylyltransferase 2 (NMNAT-2), a NAD+ synthetase, as a novel downstream target gene of p53. We show that NMNAT-2 expression is induced upon DNA damage in a p53-dependent manner. Two putative p53 binding sites were identified within the human NMNAT-2 gene, and both were found to be functional in a p53-dependent manner. Furthermore, knockdown of NMNAT-2 significantly reduces cellular NAD+ levels and protects cells from p53-dependent cell death upon DNA damage, suggesting an important functional role of NMNAT-2 in p53-mediated signaling. Our demonstration that p53 modulates cellular NAD+ synthesis is congruent with p53’s emerging role as a key regulator of metabolism and related cell fate.  相似文献   
60.

Background

Bovine respiratory disease complex (BRDC) is an infectious disease of cattle that is caused by a combination of viral and/or bacterial pathogens. Selection for cattle with reduced susceptibility to respiratory disease would provide a permanent tool for reducing the prevalence of BRDC. The objective of this study was to identify BRDC susceptibility loci in pre-weaned Holstein calves as a prerequisite to using genetic improvement as a tool for decreasing the prevalence of BRDC. High density SNP genotyping with the Illumina BovineHD BeadChip was conducted on 1257 male and 757 female Holstein calves from California (CA), and 767 calves identified as female from New Mexico (NM). Of these, 1382 were classified as BRDC cases, and 1396 were classified as controls, with all phenotypes assigned using the McGuirk health scoring system. During the acquisition of blood for DNA isolation, two deep pharyngeal and one mid-nasal diagnostic swab were obtained from each calf for the identification of bacterial and viral pathogens. Genome-wide association analyses were conducted using four analytical approaches (EIGENSTRAT, EMMAX-GRM, GBLUP and FvR). The most strongly associated SNPs from each individual analysis were ranked and evaluated for concordance. The heritability of susceptibility to BRDC in pre-weaned Holstein calves was estimated.

Results

The four statistical approaches produced highly concordant results for 373 top ranked SNPs that defined 126 chromosomal regions for the CA population. Similarly, in NM, 370 SNPs defined 138 genomic regions that were identified by all four approaches. When the two populations were combined (i.e., CA + NM) and analyzed, 324 SNPs defined 116 genomic regions that were associated with BRDC across all analytical methods. Heritability estimates for BRDC were 21% for both CA and NM as individual populations, but declined to 13% when the populations were combined.

Conclusions

Four analytical approaches utilizing both single and multi-marker association methods revealed common genomic regions associated with BRDC susceptibility that can be further characterized and used for genomic selection. Moderate heritability estimates were observed for BRDC susceptibility in pre-weaned Holstein calves, thereby supporting the application of genomic selection to reduce the prevalence of BRDC in U.S. Holsteins.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1164) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号