首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   491篇
  免费   23篇
  514篇
  2023年   3篇
  2022年   8篇
  2021年   12篇
  2020年   11篇
  2019年   9篇
  2018年   6篇
  2017年   6篇
  2016年   14篇
  2015年   19篇
  2014年   21篇
  2013年   43篇
  2012年   42篇
  2011年   38篇
  2010年   22篇
  2009年   23篇
  2008年   30篇
  2007年   21篇
  2006年   26篇
  2005年   30篇
  2004年   32篇
  2003年   21篇
  2002年   24篇
  2001年   5篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   5篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1965年   1篇
排序方式: 共有514条查询结果,搜索用时 15 毫秒
491.
Construction of potential natural vegetation (PNV) poses particular challenges in landscapes heavily altered by human activity and must be based on transparent, repeatable methods. We integrated the concept of ancient forest (AF) and ancient forest species (AFS) into a four-step procedure of PNV mapping: 1) classification of forest vegetation relevés; 2) selection of those vegetation types that can serve as PNV units, based on AF and AFS; 3) merging of selected vegetation types into five PNV units that can be predicted from a digital morphogenetic soil map; 4) mapping of three additional PNV units based on additional environmental data. The second step, concerning the selection of reference forest vegetation, is of particular interest for PNV construction in Flanders (northern Belgium), where forest cover has been subject to temporal disruption and spatial fragmentation. Among the variety of extant forest recovery states, we chose as PNV units those vegetation types for which a high proportion of relevés had been located in AF and that contained many AFS. As the frequency of AFS depends on site conditions, we only compared and selected vegetation types that are found on similar sites according to average Ellenberg indicator values. While succession is irrelevant for the definition of PNV, colonization rates of AFS can be used to estimate the time required for PNV to be restored in a site.  相似文献   
492.
493.
Exposure of red blood cells (RBC) to the K+ -ionophore valinomycin (val), causes loss of KCl and water, resulting in cell dehydration, manifested by increased cell density. While almost all normal val-treated RBC dehydrate, in sickle cell anemia (SCA) a portion of the RBC fail to dehydrate and maintain a light density, indicating the existence of val-resistant (val-res) RBC. In thalassemia and sickle cell disease (SCD), although the primary lesion is in the globin genes, damage to the RBC is partly mediated by oxidative stress. We previously showed that such RBC are under oxidative stress, having more reactive oxygen species (ROS) and less reduced glutathione than normal RBC. We now report a relationship between the phenomenon of val-res and the RBC oxidative status: Treatment with oxidants that increase ROS, also increased the frequency of val-res cells. Val-res cells had higher oxidative status than other RBC in the sample. Similar to SCA, thalassemic blood has more val-res cells than does normal blood. Val-res cells in thalassemic and sickle blood showed a higher oxidative status than normal val-res cells. Thus, oxidative stress might be involved in generation of val-res cells. Further studies are required to elucidate the origin and significance of these cells.  相似文献   
494.
In heterogeneous environments, dynamic scheduling algorithms are a powerful tool towards performance improvement of scientific applications via load balancing. However, these scheduling techniques employ heuristics that require prior knowledge about workload via profiling resulting in higher overhead as problem sizes and number of processors increase. In addition, load imbalance may appear only at run-time, making profiling work tedious and sometimes even obsolete. Recently, the integration of dynamic loop scheduling algorithms into a number of scientific applications has been proven effective. This paper reports on performance improvements obtained by integrating the Adaptive Weighted Factoring, a recently proposed dynamic loop scheduling technique that addresses these concerns, into two scientific applications: computational field simulation on unstructured grids, and N-Body simulations. Reported experimental results confirm the benefits of using this methodology, and emphasize its high potential for future integration into other scientific applications that exhibit substantial performance degradation due to load imbalance.  相似文献   
495.
496.
497.
Short-term cardiovascular responses to postural change from sitting to standing involve complex interactions between the autonomic nervous system, which regulates blood pressure, and cerebral autoregulation, which maintains cerebral perfusion. We present a mathematical model that can predict dynamic changes in beat-to-beat arterial blood pressure and middle cerebral artery blood flow velocity during postural change from sitting to standing. Our cardiovascular model utilizes 11 compartments to describe blood pressure, blood flow, compliance, and resistance in the heart and systemic circulation. To include dynamics due to the pulsatile nature of blood pressure and blood flow, resistances in the large systemic arteries are modeled using nonlinear functions of pressure. A physiologically based submodel is used to describe effects of gravity on venous blood pooling during postural change. Two types of control mechanisms are included: 1) autonomic regulation mediated by sympathetic and parasympathetic responses, which affect heart rate, cardiac contractility, resistance, and compliance, and 2) autoregulation mediated by responses to local changes in myogenic tone, metabolic demand, and CO(2) concentration, which affect cerebrovascular resistance. Finally, we formulate an inverse least-squares problem to estimate parameters and demonstrate that our mathematical model is in agreement with physiological data from a young subject during postural change from sitting to standing.  相似文献   
498.
The lack of any effective therapy along with the aging world population anticipates a growth of the worldwide incidence of Alzheimer’s disease (AD) to more than 100 million cases by 2050. Accumulation of extracellular amyloid-β (Aβ) plaques, intracellular tangles in the brain, and formation of reactive oxygen species (ROS) are the major hallmarks of the disease. In the amyloidogenic process, a β-secretase, known as BACE 1, plays a fundamental role in the production of Aβ fragments, and therefore, inhibition of such enzymes represents a major strategy for the rational design of anti-AD drugs. In this work, a series of four multi-target compounds (14), inspired by previously described ionophoric polyphenols, have been synthesized and studied. These compounds have been designed to target important aspects of AD, including BACE 1 enzymatic activity, Aβ aggregation, toxic concentrations of Cu2+ metal ions and/or ROS production. Two other compounds (5 and 6), previously reported by some of us as antimalarial agents, have also been studied because of their potential as multi-target species against AD. Interestingly, compounds 3 and 5 showed moderate to good ability to inhibit BACE 1 enzymatic activity in a FRET assay, with IC50′s in the low micromolar range (4.4?±?0.3 and 1.7?±?0.3?μM, respectively), comparable to other multi-target species, and showing that the observed activity was in part due to a competitive binding of the compounds at the active site of the enzyme. Theoretical docking calculations overall agreed with FRET assay results, displaying the strongest binding affinities for 3 and 5 at the active site of the enzyme. In addition, all compounds selectively interacted with Cu2+ metal ions forming 2:1 complexes, inhibited the production of Aβ-Cu2+ catalyzed hydroxyl radicals up to a ~100% extent, and scavenged AAPH-induced peroxyl radical species comparably to resveratrol, a compound used as reference in this work. Our results also show good anti-amyloidogenic ability: compounds 16 inhibited both the Cu2+-induced and self-induced Aβ(1–40) fibril aggregation to an extent that ranged from 31% to 77%, while they disaggregated pre-formed Aβ(1–40) mature fibrils up to a 37% and a 69% extent in absence and presence of Cu2+, respectively. Cytotoxicity was additionally studied in Tetrahymena thermophila and HEK293 cells, and compared to that of resveratrol, showing that compounds 16 display lower toxicity than that of resveratrol, a well-known non-toxic polyphenol.  相似文献   
499.

Introduction

Recent studies have revealed that rapamycin activates autophagy in human chondrocytes preventing the development of osteoarthritis (OA) like changes in vitro, while the systemic injection of rapamycin reduces the severity of experimental osteoarthritis in a murine model of OA in vivo. Since the systemic use of rapamycin is associated with numerous side effects, the goal of the current study was to examine the beneficial effect of local intra-articular injection of rapamycin in a murine model of OA and to elucidate the mechanism of action of rapamycin on articular cartilage.

Methods

Destabilization of the medial meniscus (DMM) was performed on 10-week-old male mice to induce OA. Intra-articular injections of 10 μl of rapamycin (10 μM) were administered twice weekly for 8 weeks. Articular cartilage damage was analyzed by histology using a semi-quantitative scoring system at 8 and 12 weeks after surgery. Mammalian target of rapamycin (mTOR), light chain 3 (LC3), vascular endothelial growth factor (VEGF), collagen, type X alpha 1 (COL10A1), and matrix metallopeptidase 13 (MMP13) expressions were analyzed by immunohistochemistry. VEGF, COL10A1, and MMP13 expressions were further examined via quantitative RT-PCR (qPCR).

Results

Intra-articular injection of rapamycin significantly reduced the severity of articular cartilage degradation at 8 and 12 weeks after DMM surgery. A reduction in mTOR expression and the activation of LC3 (an autophagy marker) in the chondrocytes was observed in the rapamycin treated mice. Rapamycin treatment also reduced VEGF, COL10A1, and MMP13 expressions at 8 and 12 weeks after DMM surgery.

Conclusion

These results demonstrate that the intra-articular injection of rapamycin could reduce mTOR expression, leading to a delay in articular cartilage degradation in our OA murine model. Our observations suggest that local intra-articular injection of rapamycin could represent a potential therapeutic approach to prevent OA.  相似文献   
500.
The emerging concept of generating cancer stem cells from epithelial-mesenchymal transition has attracted great interest; however, the factors and molecular mechanisms that govern this putative tumor-initiating process remain largely elusive. We report here that miR-200a not only regulates epithelial-mesenchymal transition but also stem-like transition in nasopharyngeal carcinoma cells. We first showed that stable knockdown of miR-200a promotes the transition of epithelium-like CNE-1 cells to the mesenchymal phenotype. More importantly, it also induced several stem cell-like traits, including CD133+ side population, sphere formation capacity, in vivo tumorigenicity in nude mice, and stem cell marker expression. Consistently, stable overexpression of miR-200a switched mesenchyme-like C666-1 cells to the epithelial state, accompanied by a significant reduction of stem-like cell features. Furthermore, in vitro differentiation of the C666-1 tumor sphere resulted in diminished stem-like cell population and miR-200a induction. To investigate the molecular mechanism, we demonstrated that miR-200a controls epithelial-mesenchymal transition by targeting ZEB2, although it regulates the stem-like transition differentially and specifically by β-catenin signaling. Our findings reveal for the first time the function of miR-200a in shifting nasopharyngeal carcinoma cell states via a reversible process coined as epithelial-mesenchymal to stem-like transition through differential and specific mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号