首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1274篇
  免费   62篇
  国内免费   3篇
  2022年   24篇
  2021年   39篇
  2020年   25篇
  2019年   28篇
  2018年   33篇
  2017年   35篇
  2016年   41篇
  2015年   47篇
  2014年   67篇
  2013年   91篇
  2012年   98篇
  2011年   76篇
  2010年   61篇
  2009年   34篇
  2008年   54篇
  2007年   49篇
  2006年   56篇
  2005年   46篇
  2004年   24篇
  2003年   25篇
  2002年   21篇
  2001年   24篇
  2000年   21篇
  1999年   12篇
  1998年   11篇
  1997年   12篇
  1996年   11篇
  1995年   6篇
  1994年   10篇
  1991年   13篇
  1990年   10篇
  1989年   19篇
  1988年   12篇
  1987年   17篇
  1986年   13篇
  1985年   13篇
  1984年   12篇
  1983年   9篇
  1982年   10篇
  1981年   14篇
  1980年   11篇
  1979年   10篇
  1978年   5篇
  1977年   6篇
  1974年   10篇
  1973年   6篇
  1970年   5篇
  1969年   5篇
  1968年   5篇
  1967年   11篇
排序方式: 共有1339条查询结果,搜索用时 15 毫秒
41.
Biotic stress is a major cause of heavy loss in grape productivity. In order to develop biotic stress-resistant grape varieties, the key defense genes along with its pathway have to be deciphered. In angiosperm plants, lipase-like protein phytoalexin deficient 4 (PAD4) is well known to be essential for systemic resistance against biotic stress. PAD4 functions together with its interacting partner protein enhanced disease susceptibility 1 (EDS1) to promote salicylic acid (SA)-dependent and SA-independent defense pathway. Existence and structure of key protein of systemic resistance EDS1 and PAD4 are not known in grapes. Before SA pathway studies are taken in grape, molecular evidence of EDS1: PAD4 complex is to be established. To establish this, EDS1 protein sequence was retrieved from NCBI and homologous PAD4 protein was generated using Arabidopsis thaliana as template and conserved domains were confirmed. In this study, computational methods were used to model EDS1 and PAD4 and simulated the interactions of EDS1 and PAD4. Since no structural details of the proteins were available, homology modeling was employed to construct three-dimensional structures. Further, molecular dynamic simulations were performed to study the dynamic behavior of the EDS1 and PAD4. The modeled proteins were validated and subjected to molecular docking analysis. Molecular evidence of stable complex of EDS1:PAD4 in grape supporting SA defense pathway in response to biotic stress is reported in this study. If SA defense pathway genes are explored, then markers of genes involved can play pivotal role in grape variety development especially against biotic stress leading to higher productivity.  相似文献   
42.
Over the past few years, several reports have described the presence of F0F1 ATP synthase subunits at the surface of hepatocytes, where the hydrolytic activity of F1 sector faces outside and triggers HDL endocytosis. An intriguing question is whether the ectopic enzyme has same subunit composition and molecular mass as that of the mitochondrial ATP synthase. Also due to the polar nature of hepatocytes, the enzyme may be localized to a particular cell boundary. Using different methods to prepare rat liver plasma membranes, which have been subjected to digitonin extraction, hr CN PAGE, immunoblotting, and mass spectrometry analysis, we demonstrate the presence of ecto-F0F1 complexes which have a similar molecular weight to the monomeric form of the mitochondrial complexes, containing both nuclear and mitochondrially-encoded subunits. This finding makes it unlikely that the enzyme assembles on the plasma membranes, but suggest it to be transported whole after being assembled in mitochondria by still unknown pathways. Moreover, the plasma membrane preparation enriched in basolateral proteins contains much higher amounts of complete and active F0F1 complexes, consistent with their specific function to modulate the HDL uptake on hepatocyte surface.  相似文献   
43.
ETC-1002 (8-hydroxy-2,2,14,14-tetramethylpentadecanedioic acid) is a novel investigational drug being developed for the treatment of dyslipidemia and other cardio-metabolic risk factors. The hypolipidemic, anti-atherosclerotic, anti-obesity, and glucose-lowering properties of ETC-1002, characterized in preclinical disease models, are believed to be due to dual inhibition of sterol and fatty acid synthesis and enhanced mitochondrial long-chain fatty acid β-oxidation. However, the molecular mechanism(s) mediating these activities remained undefined. Studies described here show that ETC-1002 free acid activates AMP-activated protein kinase in a Ca2+/calmodulin-dependent kinase β-independent and liver kinase β 1-dependent manner, without detectable changes in adenylate energy charge. Furthermore, ETC-1002 is shown to rapidly form a CoA thioester in liver, which directly inhibits ATP-citrate lyase. These distinct molecular mechanisms are complementary in their beneficial effects on lipid and carbohydrate metabolism in vitro and in vivo. Consistent with these mechanisms, ETC-1002 treatment reduced circulating proatherogenic lipoproteins, hepatic lipids, and body weight in a hamster model of hyperlipidemia, and it reduced body weight and improved glycemic control in a mouse model of diet-induced obesity. ETC-1002 offers promise as a novel therapeutic approach to improve multiple risk factors associated with metabolic syndrome and benefit patients with cardiovascular disease.  相似文献   
44.
Plant proteomics has made tremendous contributions in understanding the complex processes of plant biology. Here, its current status in India and Nepal is discussed. Gel-based proteomics is predominantly utilized on crops and non-crops to analyze majorly abiotic (49 %) and biotic (18 %) stress, development (11 %) and post-translational modifications (7 %). Rice is the most explored system (36 %) with major focus on abiotic mainly dehydration (36 %) stress. In spite of expensive proteomics setup and scarcity of trained workforce, output in form of publications is encouraging. To boost plant proteomics in India and Nepal, researchers have discussed ground level issues among themselves and with the International Plant Proteomics Organization (INPPO) to act in priority on concerns like food security. Active collaboration may help in translating this knowledge to fruitful applications.  相似文献   
45.

Background

Protein structure comparison play important role in in silico functional prediction of a new protein. It is also used for understanding the evolutionary relationships among proteins. A variety of methods have been proposed in literature for comparing protein structures but they have their own limitations in terms of accuracy and complexity with respect to computational time and space. There is a need to improve the computational complexity in comparison/alignment of proteins through incorporation of important biological and structural properties in the existing techniques.

Results

An efficient algorithm has been developed for comparing protein structures using elastic shape analysis in which the sequence of 3D coordinates atoms of protein structures supplemented by additional auxiliary information from side-chain properties are incorporated. The protein structure is represented by a special function called square-root velocity function. Furthermore, singular value decomposition and dynamic programming have been employed for optimal rotation and optimal matching of the proteins, respectively. Also, geodesic distance has been calculated and used as the dissimilarity score between two protein structures. The performance of the developed algorithm is tested and found to be more efficient, i.e., running time reduced by 80–90 % without compromising accuracy of comparison when compared with the existing methods. Source codes for different functions have been developed in R. Also, user friendly web-based application called ProtSComp has been developed using above algorithm for comparing protein 3D structures and is accessible free.

Conclusions

The methodology and algorithm developed in this study is taking considerably less computational time without loss of accuracy (Table 2). The proposed algorithm is considering different criteria of representing protein structures using 3D coordinates of atoms and inclusion of residue wise molecular properties as auxiliary information.
  相似文献   
46.
47.
Context: Surface-modified pH-sensitive liposomal system may be useful for intracellular delivery of chemotherapeutics.

Objective: Achieving site-specific targeting with over-expressed hyaluronic acid (HA) receptors along with using pH sensitive liposome carrier for intracellular drug delivery was the aim of this study.

Materials and methods: Stealth HA-targeted pH-sensitive liposomes (SL-pH-HA) were developed and evaluated to achieve effective intracellular delivery of doxorubicin (DOX) vis–a-vis enhanced antitumor activity.

Results: The in vitro release studies demonstrated that the release of DOX from SL-pH-HA was pH-dependent, i.e. faster at mildly acidic pH ~5, compared to physiological pH ~7.4. SLpH-HA was evaluated for their cytotoxicity potential on CD44 receptor expressing MCF-7 cells. The half maximal inhibitory concentration (IC50) of SL-pH-HA and SL-HA were about 1.9 and 2.5?μM, respectively, after 48?h of incubation. The quantitative uptake study revealed higher localization of targeted liposomes in the receptor positive cells, which was further confirmed by fluorescent microscopy. The antitumor efficacy of the DOX-loaded HA-targeted pH-sensitive liposomes was also verified in a tumor xenograft mouse model.

Discussion: DOX was efficiently delivered to the tumor site by active targeting via HA and CD44 receptor interaction. The major side-effect of conventional DOX formulation, i.e. cardiotoxicity was also estimated by measuring serum enzyme levels of LDH and CPK and found to be minimized with developed formulation. Overall, HA targeted pH-sensitive liposomes were significantly more potent than the non-targeted liposomes in cells expressing high levels of CD44.

Conclusion: Results strongly implies the promise of such liposomal system as an intracellular drug delivery carrier developed for potential anticancer treatment.  相似文献   
48.
49.
Epigenetic dysregulation plays a crucial role in cardiovascular diseases. Previously, we reported that acetyltransferase p300 (ATp300) inhibitor L002 prevents hypertension‐induced cardiac hypertrophy and fibrosis in a murine model. In this short communication, we show that treatment of hypertensive mice with ATp300‐specific small molecule inhibitor L002 or C646 reverses hypertension‐induced left ventricular hypertrophy, cardiac fibrosis and diastolic dysfunction, without reducing elevated blood pressures. Biochemically, treatment with L002 and C646 also reverse hypertension‐induced histone acetylation and myofibroblast differentiation in murine ventricles. Our results confirm and extend the role of ATp300, a major epigenetic regulator, in the pathobiology of cardiac hypertrophy and fibrosis. Most importantly, we identify the efficacies of ATp300 inhibitors C646 and L002 in reversing hypertension‐induced cardiac hypertrophy and fibrosis, and discover new anti‐hypertrophic and anti‐fibrotic candidates.  相似文献   
50.
To prevent vaccine‐associated paralytic poliomyelitis, WHO recommended withdrawal of Oral Polio Vaccine (Serotype‐2) and a single dose of Inactivated Poliovirus Vaccine (IPV). IPV however is expensive, requires cold chain, injections and offers limited intestinal mucosal immunity, essential to prevent polio reinfection in countries with open sewer system. To date, there is no virus‐free and cold chain‐free polio vaccine capable of inducing robust mucosal immunity. We report here a novel low‐cost, cold chain/poliovirus‐free, booster vaccine using poliovirus capsid protein (VP1, conserved in all serotypes) fused with cholera non‐toxic B subunit (CTB) expressed in lettuce chloroplasts. PCR using unique primer sets confirmed site‐specific integration of CTB‐VP1 transgene cassettes. Absence of the native chloroplast genome in Southern blots confirmed homoplasmy. Codon optimization of the VP1 coding sequence enhanced its expression 9–15‐fold in chloroplasts. GM1‐ganglioside receptor‐binding ELISA confirmed pentamer assembly of CTB‐VP1 fusion protein, fulfilling a key requirement for oral antigen delivery through gut epithelium. Transmission Electron Microscope images and hydrodynamic radius analysis confirmed VP1‐VLPs of 22.3 nm size. Mice primed with IPV and boosted three times with lyophilized plant cells expressing CTB‐VP1co, formulated with plant‐derived oral adjuvants, enhanced VP1‐specific IgG1, VP1‐IgA titres and neutralization (80%–100% seropositivity of Sabin‐1, 2, 3). In contrast, IPV single dose resulted in <50% VP1‐IgG1 and negligible VP1‐IgA titres, poor neutralization and seropositivity (<20%, <40% Sabin 1,2). Mice orally boosted with CTB‐VP1co, without IPV priming, failed to produce any protective neutralizing antibody. Because global population is receiving IPV single dose, booster vaccine free of poliovirus or cold chain offers a timely low‐cost solution to eradicate polio.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号