首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   432篇
  免费   49篇
  国内免费   1篇
  2022年   6篇
  2021年   5篇
  2019年   4篇
  2018年   7篇
  2017年   8篇
  2016年   8篇
  2015年   24篇
  2014年   9篇
  2013年   11篇
  2012年   21篇
  2011年   20篇
  2010年   22篇
  2009年   14篇
  2008年   19篇
  2007年   9篇
  2006年   19篇
  2005年   11篇
  2004年   8篇
  2003年   16篇
  2002年   17篇
  2001年   16篇
  2000年   12篇
  1999年   7篇
  1998年   6篇
  1995年   6篇
  1994年   4篇
  1993年   5篇
  1991年   6篇
  1990年   11篇
  1989年   10篇
  1988年   8篇
  1987年   5篇
  1986年   10篇
  1985年   8篇
  1983年   6篇
  1982年   5篇
  1980年   5篇
  1978年   5篇
  1977年   3篇
  1976年   5篇
  1975年   6篇
  1973年   6篇
  1970年   5篇
  1954年   2篇
  1952年   10篇
  1951年   11篇
  1950年   8篇
  1945年   2篇
  1922年   2篇
  1905年   2篇
排序方式: 共有482条查询结果,搜索用时 731 毫秒
141.
142.
143.
144.
Abstract. The extracellular matrix plays a vital role in regulating normal tissue development and function - largely via the specific arrangement of macromolecules such as collagens, proteoglycans, glycosaminoglycans and glycoproteins. Previous reports have concentrated on associations between combinations of collagens/proteoglycans, collagens/glycoproteins and proteoglycans/glycosaminoglycans whilst little information is available on associations between collagens and free glycosaminoglycans.
In this review, we discuss possible associations between collagens and the glycosaminoglycan hyaluronan; macromolecules which are known to exhibit changes in amount and composition during development and under pathological conditions. We demonstrate two types of collagen/hyaluronan association in vivo: the first, during the formation of extracellular matrix structures where neither collagens nor hyaluronan are degraded, resulting in the regulation of collagen fibrillogenesis, and the second, involving an inverse correlation between collagen synthesis and hyaluronan degradation and vice versa. We suggest that associations between collagens and hyaluronan play an important role in the initiation and maintenance of angiogenesis and put forward a model of cartilage vascularisation which relies on these associations.  相似文献   
145.
Adoptive transfer of gene modified T cells provides possible immunotherapy for patients with cancers refractory to other treatments. We have previously used the non-viral piggyBac transposon system to gene modify human T cells for potential immunotherapy. However, these previous studies utilized adoptive transfer of modified human T cells to target cancer xenografts in highly immunodeficient (NOD-SCID) mice that do not recapitulate an intact immune system. Currently, only viral vectors have shown efficacy in permanently gene-modifying mouse T cells for immunotherapy applications. Therefore, we sought to determine if piggyBac could effectively gene modify mouse T cells to target cancer cells in a mouse cancer model. We first demonstrated that we could gene modify cells to express murine interleukin-12 (p35/p40 mIL-12), a transgene with proven efficacy in melanoma immunotherapy. The OT-I melanoma mouse model provides a well-established T cell mediated immune response to ovalbumin (OVA) positive B16 melanoma cells. B16/OVA melanoma cells were implanted in wild type C57Bl6 mice. Mouse splenocytes were isolated from C57Bl6 OT-I mice and were gene modified using piggyBac to express luciferase. Adoptive transfer of luciferase-modified OT-I splenocytes demonstrated homing to B16/OVA melanoma tumors in vivo. We next gene-modified OT-I cells to express mIL-12. Adoptive transfer of mIL-12-modified mouse OT-I splenocytes delayed B16/OVA melanoma tumor growth in vivo compared to control OT-I splenocytes and improved mouse survival. Our results demonstrate that the piggyBac transposon system can be used to gene modify splenocytes and mouse T cells for evaluating adoptive immunotherapy strategies in immunocompetent mouse tumor models that may more directly mimic immunotherapy applications in humans.  相似文献   
146.
Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (mitochondrial uncoupler) and sodium azide (cytochrome c oxidase inhibitor), we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1)-, fusion (fzo-1)-, mitophagy (pdr-1, pink-1)-, and electron transport chain complex III (isp-1)-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes.  相似文献   
147.
Southwestern corn borer (SWCB, Diatraea grandiosella) and fall armyworm (FAW, Spodoptera frugiperda) are major pests of sorghum in the southern United States. Host plant resistance is a desirable means for reducing plant damage and yield losses from both insects. In this study, we evaluated 12 sorghum lines for whorl‐stage resistance to leaf‐feeding SWCB and FAW in greenhouse and laboratory bioassays. Differential plant responses were detected against the two insects. Among 12 lines tested, CM1821, Della and PI196583 were resistant to both insects, while BTx2752 was largely susceptible. Line R.09110 was resistant to SWCB, but susceptible to FAW, whereas Redbine‐60 was susceptible to SWCB, but not to FAW. In addition, we quantified various chemical components in the plants and determined their association with insect resistance. Tannin and chlorophyll in leaves did not show any significant correlation with resistance to either insects, but contents of soluble protein in general were negatively correlated with resistance to both insects. Endogenous soluble sugar and dhurrin were only positively correlated with resistance to SWCB, but not with FAW resistance. To gain some molecular insight into resistance mechanism of sorghum to SWCB, we performed qPCR reactions for key genes encoding enzymes involved in dhurrin and jasmonic acid (JA) biosynthesis on selected resistant or susceptible lines. Although these genes were rapidly and strongly induced by insect feeding in all lines, the observed resistance is likely explained by higher constitutive dhurrin contents in some resistant lines and higher basal JA biosynthesis in others. Our results suggest that sorghum utilizes multiple strategies to defend itself against SWCB.  相似文献   
148.
The plant pathogen, Pseudomonas syringae (Ps), together with related Ps species, infects and attacks a wide range of agronomically important crops, including tomato, kiwifruit, pepper, olive and soybean, causing economic losses. Currently, chemicals and introduced resistance genes are used to protect plants against these pathogens but have limited success and may have adverse environmental impacts. Consequently, there is a pressing need to develop alternative strategies to combat bacterial disease in crops. One such strategy involves using narrow‐spectrum protein antibiotics (so‐called bacteriocins), which diverse bacteria use to compete against closely related species. Here, we demonstrate that one bacteriocin, putidacin L1 (PL1), can be expressed in an active form at high levels in Arabidopsis and in Nicotiana benthamiana in planta to provide effective resistance against diverse pathovars of Ps. Furthermore, we find that Ps strains that mutate to acquire tolerance to PL1 lose their O‐antigen, exhibit reduced motility and still cannot induce disease symptoms in PL1‐transgenic Arabidopsis. Our results provide proof‐of‐principle that the transgene‐mediated expression of a bacteriocin in planta can provide effective disease resistance to bacterial pathogens. Thus, the expression of bacteriocins in crops might offer an effective strategy for managing bacterial disease, in the same way that the genetic modification of crops to express insecticidal proteins has proven to be an extremely successful strategy for pest management. Crucially, nearly all genera of bacteria, including many plant pathogenic species, produce bacteriocins, providing an extensive source of these antimicrobial agents.  相似文献   
149.

Background and Aims

Evidence suggests obesity-related inflammation alters iron metabolism potentially increasing the risk of iron deficiency. This cross-sectional study aimed to investigate iron, hepcidin and inflammatory status in young, healthy overweight and obese women.

Methods

114 young (18–25 years), healthy comorbidity-free women with a body mass index (BMI) ≥27.5 kg/m2 were recruited. Biochemical data were analysed using mean ± standard deviation or median (interquartile range) and multivariate modelling. Biochemical markers were also stratified according to varying degrees of overweight and obesity.

Results

Anaemia (haemoglobin <120 g/l) and iron deficiency (serum ferritin <15.0 µg/l) were prevalent in 10% and 17% of participants respectively. Mean/median soluble transferrin receptor was 1.61±0.44 mg/l; hepcidin 6.40 (7.85) ng/ml and C-reactive protein (CRP) 3.58 (5.81) mg/l. Multivariate modelling showed that BMI was a significant predictor of serum iron (coefficient = -0.379; standard error = 0.139; p = 0.008), transferrin saturation (coefficient = -0.588; standard error = 0.222; p = 0.009) and CRP (coefficient = 0.127; standard error = 0.024; p<0.001). Stratification of participants according to BMI showed those with ≥35.0 kg/m2 had significantly higher CRP (p<0.001) than those in lower BMI categories.

Conclusions

Increasing obesity was associated with minor disturbances in iron metabolism. However, overall outcomes indicated simple iron deficiency (hypoferritinaemia) was the primary iron-related abnormality with no apparent contribution of inflammation or hepcidin, even in those with BMI >35.0 kg/m2. This indicates that obesity alone may not be sufficient to induce clinically significant disturbances to iron metabolism as previously described. This may be attributed to the lack of comorbidity in this cohort.  相似文献   
150.
Sorghum (Sorghum bicolor) has high levels of starch,sugar,and fiber and is one of the most important energy crops in the world.Insect damage is one of the challenges that impacts sorghum biomass production.There are at least 150 insect species that can infest sorghum varieties worldwide.These insects can complete several generations within a growing season,they target various parts of sorghum plants at developmental stages,and they cause significant biomass losses.Genetic research has revealed the existence...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号