首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   6篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   2篇
  2018年   8篇
  2017年   2篇
  2016年   5篇
  2015年   5篇
  2014年   2篇
  2013年   7篇
  2012年   6篇
  2011年   6篇
  2008年   4篇
  2007年   3篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有64条查询结果,搜索用时 46 毫秒
11.
Transcaucasia comprises a key region for understanding the history of both the hybrid zone between house mouse lineages and the dispersal of the Neolithic way of life outside its Near Eastern cradle. The opportunity to document the colonization history of both men and mice in Transcaucasia was made possible by the discovery of mouse remains accumulated in pits from a 6000‐year‐old farming village in the Nakhchivan (Autonomous Republic of Nakhchivan, Azerbaijan). The present study investigated their taxonomy and most likely dispersal path through the identification of the Mus lineage to which they might belong using a geometric morphometric approach of dental traits distances between archaeological and modern populations of the different Mus lineages of South‐West Asia. We demonstrate that the mouse remains trapped in the deep storage pits of the dwelling belong to the Mus musculus domesticus from the Near East, with dental shapes similar to current populations in Northern Syria. These results strongly suggest that the domesticus lineage was dispersed into Transcaucasia from the upper Euphrates valley by Neolithic migration, some time between the 7th and 5th millennium BC, providing substantial evidence to back up the scenario featuring near‐eastern stimuli in the emergence of agriculture in the South Caucasus. The domesticus mitochondrial DNA signature of the current house mouse in the same location 5000 years later, as well as their turnover towards a subspecies musculus/castaneus phenotype, suggests that early domesticus colonizers hybridized with a later musculus (and maybe castaneus) dispersal originating from south of the Caspian Sea and/or Northern Caucasia. © 2013 The Linnean Society of London  相似文献   
12.
Russian Journal of Marine Biology - The present study is aimed to investigate the effects of iron nanoparticles (Fe-NPs) on growth performance, liver histopathology and some blood parameters of the...  相似文献   
13.
Cambrian-Ordovician sedimentary sequences crop out extensively in the area surrounding the Sarydzhaz River, a remote mountainous region situated in the eastern part of Kyrgyzstan. These sequences, composed essentially of fine siliciclastic lithologies, were deposited on a passive margin of the peri-Gondwanan Karatau-Naryn microplate. Palaeontological constraints for the age of these sequences are rare. Recent efforts of geological mapping in the area discovered reasonably well-preserved radiolarian and conodont faunas. The occurrence of conodonts was mentioned previously, but no taxonomic details were ever reported. Two conodont assemblages are identified from the Oldzhobai Formation; the first is dominated by Paracordylodus gracilis, which can be correlated with the upper Tremadocian to lower Floian; the second assemblage is more diverse and characterized by Prioniodus elegans, suggesting a mid Floian age. This is the first discovery of Ordovician Radiolaria from Kyrgyzstan. In spite of its rather moderately good to poor preservation, the fauna is interesting in many respects, especially due to the presence of a new radiolarian species (Inanigutta (?) kyrgyza nov. sp.). The latter is easily identifiable by the distinctive pore pattern of its cortical shell and has therefore the potential to become in the future a biostratigraphic marker species.  相似文献   
14.
15.
Many research studies report the healing effects of Aloe Vera, thyroid hormone cream and silver sulfadiazine. However, the effects of these therapeutic agents are not well understood and have not been compared in one study. This study aimed at investigating the effects of topical application of an Aloe vera gel, a thyroid hormone cream and a silver sulfadiazine cream on the healing of skin wounds surgically induced in Wistar rats for determining the treatment of choice. In a randomized controlled trial, twelve male rats, aged 120 days and with a mean weight of 250 to 300 g, were divided randomly into 5 groups based on drug treatments: Aloe vera gel (AV), thyroid hormone cream (TC), silver sulfadiazine 1% (S), vehicle (V) and control. To evaluate the efficacy of each treatment technique, a biomechanical approach was used to assess tensile stress after 14 days of treatment. Tensile stress was significantly improved in the Aloe vera gel group as compared with the other four groups (P≤0.05). While the other treatment options resulted in better healing than the control group, this difference was not significant. We conclude that Aloe vera topical application accelerated the healing process more than thyroid hormone, silver sulfadiazine and vehicle in surgically induced incisions in rats.  相似文献   
16.
The interaction of native calf thymus DNA with clodinafop-propargyl (CP), in 10 mM HEPES aqueous solutions at neutral pH 7.2, has been investigated by spectrophotometric, circular dichroism (CD), spectrofluorometric, melting temperature (Tm), and viscosimetric techniques. It was found that CP molecules could intercalate between base pairs of DNA as evidenced by hyperchromism in UV absorption band of DNA, an increase in melting temperature, a sharp increase in specific viscosity of DNA, induced CD spectral changes, and increase in the fluorescence of methylene blue (MB)-DNA solutions in the presence of increasing amounts of CP, which indicates that it is able to release the intercalated MB completely. All results suggest that the CP interacts with calf thymus DNA by an intercalative mode of binding.  相似文献   
17.
The use of ionic liquids that are solid at room temperature such as n-octyl-pyridinium hexafluorophosphate (nOPPF(6)) is shown to be advantageous in the fabrication of new form of biocomposite materials with attractive performance over other types of composites and pastes involving non-conductive binders. The resulting IL/graphite material brings new capabilities for electrochemical devices by combining the advantages of ILs and "bulk" composite electrodes. The electrocatalytic properties of the ILs are not impaired by their association with the graphite powder. The marked electrocatalytic activity towards hydrogen peroxide permits effective amperometric biosensing of glucose in connection with the incorporation of glucose oxidase within the three-dimensional IL/graphite matrix. The accelerated electron transfer is coupled with low background current and improved linearity. The advantages of these IL-based biocomposite devices are illustrated from comparison to conventional mineral oil/graphite biocomposite. The influence of the IL and glucose oxidase (GOx) loading upon the amperometric and voltammetric data, as well as the electrode capacitance and resistance, is examined. The preparation of IL/graphite composites overcomes a major obstacle for creating IL-based biosensing devices and expands the scope of IL-based electrochemical devices.  相似文献   
18.
The effects of osmolytes, including sucrose, sorbitol and proline on the remaining activity of firefly luciferase were measured. Heat inactivation studies showed that these osmolytes maintain the remaining activity of enzyme and increase activation energy of thermal unfolding reaction. Fluorescence and circular dichroism (CD) experiments showed changes in secondary and tertiary structure of firefly luciferase, in the presence of sucrose, sorbitol and proline. The unfolding curves of luciferase (obtained by far-UV CD spectra), indicated an irreversible thermal denaturation and raising of the midpoint of the unfolding transition temperature (T(m)) in the presence of osmolytes.  相似文献   
19.
Scaffold‐based tissue engineering is considered as a promising approach in the regenerative medicine. Graft instability of collagen, by causing poor mechanical properties and rapid degradation, and their hard handling remains major challenges to be addressed. In this research, a composite structured nano‐/microfibrous scaffold, made from a mixture of chitosan–ß‐glycerol phosphate–gelatin (chitosan–GP–gelatin) using a standard electrospinning set‐up was developed. Gelatin–acid acetic and chitosan ß‐glycerol phosphate–HCL solutions were prepared at ratios of 30/70, 50/50, 70/30 (w/w) and their mechanical and biological properties were engineered. Furthermore, the pore structure of the fabricated nanofibrous scaffolds was investigated and predicted using a theoretical model. Higher gelatin concentrations in the polymer blend resulted in significant increase in mean pore size and its distribution. Interaction between the scaffold and the contained cells was also monitored and compared in the test and control groups. Scaffolds with higher chitosan concentrations showed higher rate of cell attachment with better proliferation property, compared with gelatin‐only scaffolds. The fabricated scaffolds, unlike many other natural polymers, also exhibit non‐toxic and biodegradable properties in the grafted tissues. In conclusion, the data clearly showed that the fabricated biomaterial is a biologically compatible scaffold with potential to serve as a proper platform for retaining the cultured cells for further application in cell‐based tissue engineering, especially in wound healing practices. These results suggested the potential of using mesoporous composite chitosan–GP–gelatin fibrous scaffolds for engineering three‐dimensional tissues with different inherent cell characteristics. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 163–175, 2016.  相似文献   
20.
Using cell‐based engineered skin is an emerging strategy for treating difficult‐to‐heal wounds. To date, much endeavor has been devoted to the fabrication of appropriate scaffolds with suitable biomechanical properties to support cell viability and growth in the microenvironment of a wound. The aim of this research was to assess the impact of adipose tissue‐derived mesenchymal stem cells (AD‐MSCs) and keratinocytes on gelatin/chitosan/β‐glycerol phosphate (GCGP) nanoscaffold in full‐thickness excisional skin wound healing of rats. For this purpose, AD‐MSCs and keratinocytes were isolated from rats and GCGP nanoscaffolds were electrospun. Through an in vivo study, the percentage of wound closure was assessed on days 7, 14, and 21 after wound induction. Samples were taken from the wound sites in order to evaluate the density of collagen fibers and vessels at 7 and 14 days. Moreover, sampling was done on days 7 and 14 from wound sites to assess the density of collagen fibers and vessels. The wound closure rate was significantly increased in the keratinocytes‐AD‐MSCs‐scaffold (KMS) group compared with other groups. The expressions of vascular endothelial growth factor, collagen type 1, and CD34 were also significantly higher in the KMS group compared with the other groups. These results suggest that the combination of AD‐MSCs and keratinocytes seeded onto GCGP nanoscaffold provides a promising treatment for wound healing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号