首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   15篇
  2023年   1篇
  2021年   7篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   6篇
  2016年   2篇
  2015年   11篇
  2014年   10篇
  2013年   8篇
  2012年   13篇
  2011年   16篇
  2010年   9篇
  2009年   5篇
  2008年   11篇
  2007年   15篇
  2006年   12篇
  2005年   11篇
  2004年   11篇
  2003年   7篇
  2002年   7篇
  2001年   6篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1996年   1篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1989年   2篇
  1988年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1971年   1篇
排序方式: 共有208条查询结果,搜索用时 687 毫秒
201.
Coinfections of two or more parasites within one host are more of a rule than an exception in nature. Interactions between coinfecting parasites can greatly affect their abundance and prevalence. Characteristics of the host, such as genetic diversity, can also affect the infection dynamics of coinfecting parasites. Here, we investigate for the first time the association of coinfection patterns of two marine apicomplexans, Rhytidocystis sp. and Selenidium pygospionis, with the genetic diversity of their host, the polychaete Pygospio elegans, from natural populations. Host genetic diversity was determined with seven microsatellite loci and summarized as allelic richness, inbreeding coefficient, and individual heterozygosity. We detected nonsignificant correlations between infection loads and both individual host heterozygosity and population genetic diversity. Prevalence and infection load of Rhytidocystis sp. were higher than those of S. pygospionis, and both varied spatially. Coinfections were common, and almost all hosts infected by S. pygospionis were also infected by Rhytidocystis sp. Rhytidocystis sp. infection load was significantly higher in dual infections. Our results suggest that factors other than host genetic diversity might be more important in marine apicomplexan infection patterns and experimental approaches would be needed to further determine how interactions between the apicomplexans and their host influence infection.  相似文献   
202.
Roots, tubers, and bananas (RTB) are vital staples for food security in the world's poorest nations. A major constraint to current RTB breeding programmes is limited knowledge on the available diversity due to lack of efficient germplasm characterization and structure. In recent years large‐scale efforts have begun to elucidate the genetic and phenotypic diversity of germplasm collections and populations and, yet, biochemical measurements have often been overlooked despite metabolite composition being directly associated with agronomic and consumer traits. Here we present a compound database and concentration range for metabolites detected in the major RTB crops: banana (Musa spp.), cassava (Manihot esculenta), potato (Solanum tuberosum), sweet potato (Ipomoea batatas), and yam (Dioscorea spp.), following metabolomics‐based diversity screening of global collections held within the CGIAR institutes. The dataset including 711 chemical features provides a valuable resource regarding the comparative biochemical composition of each RTB crop and highlights the potential diversity available for incorporation into crop improvement programmes. Particularly, the tropical crops cassava, sweet potato and banana displayed more complex compositional metabolite profiles with representations of up to 22 chemical classes (unknowns excluded) than that of potato, for which only metabolites from 10 chemical classes were detected. Additionally, over 20% of biochemical signatures remained unidentified for every crop analyzed. Integration of metabolomics with the on‐going genomic and phenotypic studies will enhance ’omics‐wide associations of molecular signatures with agronomic and consumer traits via easily quantifiable biochemical markers to aid gene discovery and functional characterization.  相似文献   
203.
Background and AimsBananas (Musa spp.) are a major staple food for hundreds of millions of people in developing countries. The cultivated varieties are seedless and parthenocarpic clones of which the ancestral origin remains to be clarified. The most important cultivars are triploids with an AAA, AAB or ABB genome constitution, with A and B genomes provided by M. acuminata and M. balbisiana, respectively. Previous studies suggested that inter-genome recombinations were relatively common in banana cultivars and that triploids were more likely to have passed through an intermediate hybrid. In this study, we investigated the chromosome structure within the ABB group, composed of starchy cooking bananas that play an important role in food security.MethodsUsing SNP markers called from RADSeq data, we studied the chromosome structure of 36 ABB genotypes spanning defined taxonomic subgroups. To complement our understanding, we searched for similar events within nine AB hybrid genotypes.Key ResultsRecurrent homologous exchanges (HEs), i.e. chromatin exchanges between A and B subgenomes, were unravelled with at least nine founding events (HE patterns) at the origin of ABB bananas prior to clonal diversification. Two independent founding events were found for Pisang Awak genotypes. Two HE patterns, corresponding to genotypes Pelipita and Klue Teparod, show an over-representation of B genome contribution. Three HE patterns mainly found in Indian accessions shared some recombined regions and two additional patterns did not correspond to any known subgroups.ConclusionsThe discovery of the nine founding events allowed an investigation of the possible routes that led to the creation of the different subgroups, which resulted in new hypotheses. Based on our observations, we suggest different routes that gave rise to the current diversity in the ABB cultivars, routes involving primary AB hybrids, routes leading to shared HEs and routes leading to a B excess ratio. Genetic fluxes took place between M. acuminata and M. balbisiana, particularly in India, where these unbalanced AB hybrids and ABB allotriploids originated, and where cultivated M. balbisiana are abundant. The result of this study clarifies the classification of ABB cultivars, possibly leading to the revision of the classification of this subgroup.  相似文献   
204.
We developed a scale-up process design for the production of the 18 kDa heat shock recombinant protein from Mycobacterium leprae cloned in Saccharomyces cerevisiae (1). Here we present some of the costs associated with running a process based in our laboratory and pilot scale data. Based on these values and assuming the demand of the 18kDa-hsp protein as 500g/year we can review costs at least on an approximate basis.  相似文献   
205.
Yarden Cohen  Elad Schneidman  Rony Paz 《Neuron》2021,109(5):839-851.e9
  相似文献   
206.
Despite their similar morphology, banana and maize shoot tips responded strikingly different with respect to the in vitro formation of homogeneous multiple shoot clusters. While up to 50 small shoots per maize explant could be induced within 1 month, zero to one additional shoot formed starting from a banana shoot tip. Subsequently, banana shoot tips were subjected to different combinations of five cytokinins (0–100 μM) and five auxins (0–5 μM). The cytokinins thidiazuron and benzylaminopurine stimulated multiplication to a higher extent compared to zeatin, kinetin and isopentenyl adenine. The addition of indoleacetic acid, naphthalene acetic acid or indolebutyric acid to cytokinin containing medium did not affect the in vitro response. In contrast, 2,4-dichlorophenoxyacetic acid (1 and 5 μM) and a higher concentration of picloram (5 μM) had a detrimental effect on shoot formation and resulted in explant death and globule development. When small (0.1 cm) shoot tips were grown on cytokinin medium without an auxin source, the average number of shoots was generally two to three times lower compared to bigger (0.5 cm) shoot tips. Based on our experience in maize and this large-scale study with banana shoot tips, we conclude that banana is extremely recalcitrant towards adventitious shoot formation. This recalcitrance could not be overcome by any of the 173 different plant growth regulator combinations tested. In vitro multiplication of banana thus appears solely restricted to axillary shoot formation.  相似文献   
207.
A theory of diffusion control within hollow fiber catalysts is derived for three different types of coordinate geometries: Cartesian, cylindrical, and spherical. Effectiveness factors are calculated and formulas for reactant conversion in both a fixed-bed and a contimunuous-feed stirred-tank reactor are derived. The apparent Michaelis constant, Km′, is a measure of the amount of diffusion control within the catalysts. When Km′ is equal to Km, the true Michaelis constant, there is no diffusion control. In all other cases Km′ is greater than Km. Hollow fibers are attractive alternatives to spherical microcapsules for the encapsulation of enzymes.  相似文献   
208.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号