首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   15篇
  2023年   1篇
  2021年   7篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   6篇
  2016年   2篇
  2015年   11篇
  2014年   10篇
  2013年   8篇
  2012年   13篇
  2011年   16篇
  2010年   9篇
  2009年   5篇
  2008年   11篇
  2007年   15篇
  2006年   12篇
  2005年   11篇
  2004年   11篇
  2003年   7篇
  2002年   7篇
  2001年   6篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1996年   1篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1989年   2篇
  1988年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1971年   1篇
排序方式: 共有208条查询结果,搜索用时 93 毫秒
101.
Bananas (Musa spp.) are one of the main fruit crops grown worldwide. With the annual production reaching 144 million tons, their production represents an important contribution to the economies of many countries in Asia, Africa, Latin-America and Pacific Islands. Most importantly, bananas are a staple food for millions of people living in the tropics. Unfortunately, sustainable banana production is endangered by various diseases and pests, and the breeding for resistant cultivars relies on a far too small base of genetic variation. Greater diversity needs to be incorporated in breeding, especially of wild species. Such work requires a large and thoroughly characterized germplasm collection, which also is a safe depository of genetic diversity. The largest ex situ Musa germplasm collection is kept at the International Transit Centre (ITC) in Leuven (Belgium) and currently comprises over 1500 accessions. This report summarizes the results of systematic cytological and molecular characterization of the Musa ITC collection. By December 2015, 630 accessions have been genotyped. The SSR markers confirmed the previous morphological based classification for 84% of ITC accessions analyzed. The remaining 16% of the genotyped entries may need field verification by taxonomist to decide if the unexpected classification by SSR genotyping was correct. The ploidy level estimation complements the molecular data. The genotyping continues for the entire ITC collection, including newly introduced accessions, to assure that the genotype of each accession is known in the largest global Musa gene bank.  相似文献   
102.
WNK4 kinase mutations produce the autosomal dominant disorder familial hyperkalemia and hypertension (FHH), also known as pseudohypoaldosteronism type II, by a molecular mechanism that is not completely understood. In vitro experiments in frog oocytes showed that WNK4 affects ion transport systems such as the Na-Cl cotransporter and the renal outer medullary potassium channel. Some features of FHH suggest that long-term effects are involved in WNK4 signaling. In addition, WNK1 and WNK2, paralogs of WNK4, were shown to be involved in MAP kinase signaling. We therefore investigated possible WNK4 involvement in MAP kinase signaling. We stimulated HEK 293 cells overexpressing WNK4 by hypertonicity or using EGF, and measured phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and p38. WNK4 augmented the phosphorylation of ERK1/2 and p38 in response to both hypertonicity and EGF. The FHH-producing and kinase-deficient mutants behaved similarly to wild-type WNK4. Hypertonicity stimulation was accompanied by cellular relocalization of WNK4 as manifested by its reversible disappearance from the supernatant fraction following extraction with a detergent-containing buffer. Live-cell microscopy showed that the cytoplasmic-soluble WNK4 redistributes rapidly to membrane-bound organelles, which, in the case of WNK1 kinase, were recently shown to represent trans-Golgi network/recycling endosomes. In contrast, EGF stimulation was not accompanied by redistribution of WNK4 as determined by cell fractionation or cell microscopy. The observation that WNK4-induced MAP kinase stimulation caused by hypertonicity, but not that caused by EGF, is associated with WNK4 subcellular redistribution suggests that this redistribution has a role in WNK4 signaling.  相似文献   
103.
Upon stimulation, many proteins translocate into the nucleus in order to regulate a variety of cellular processes. The mechanism underlying the translocation is not clear since many of these proteins lack a canonical nuclear localization signal (NLS). We searched for an alternative mechanism in extracellular signal-regulated kinase (ERK)-2 and identified a 3 amino acid domain (SPS) that is phosphorylated upon stimulation to induce nuclear translocation of ERK2. A 19 amino acid stretch containing this phosphorylated domain inserts nondiffusible proteins to the nucleus autonomously. The phosphorylated SPS acts by binding to importin7 and the release from nuclear pore proteins. This allows its functioning both in passive and active ERK transports. A similar domain appears in many cytonuclear shuttling proteins, and we found that phosphorylation of similar sequences in SMAD3 or MEK1 also induces their nuclear accumulation. Therefore, our findings show that this phosphorylated domain acts as a general nuclear translocation signal (NTS).  相似文献   
104.
Analysis of soil moisture variations in an irrigated orchard root zone   总被引:1,自引:1,他引:0  
Polak  Amir  Wallach  Rony 《Plant and Soil》2001,233(2):145-159
Soil moisture and suction head in an irrigated orchard were continuously monitored by time domain reflectometry (TDR) probes and gypsum blocks, respectively, during and between successive irrigation events. On each side of the trees in the plot, two 30-cm long probes were installed vertically 10 cm below the soil surface (denoted as shallow) and another two probes were installed vertically 40 cm below the soil surface (denoted as deep). The variation in moisture content measured by the TDR probes between successive irrigation events was qualitatively divided into four stages: the first was during water application; the second initiated when irrigation stopped and the moisture content in the layer sharply decreased, mainly due to free drainage. The succeeding moderate soil-moisture decrease, caused by the simultaneous diminishing free drainage and root uptake, was the third stage. During the fourth stage, moisture depletion from the layer was solely by root uptake. The slopes of moisture content variation with time throughout this stage enabled the monitoring of water availability to the plant. The range of moisture content variations and moisture depletion rates between subsequent irrigation events was higher in the shallow (10–40 cm) than in the deeper (40–70 cm) layer. Irrigation nonuniformity and spatial variability of soil hydraulic properties contributed to the unevenness of the moisture distribution in the soil profile. However, as soon as moisture content within a layer reached field capacity, namely the free drainage had stopped, irrigation uniformity had a negligible effect on water flux to the plant roots. The measured data indicate that soil moisture is fully available to the plant as long as the momentary moisture flux from the soil bulk to the soil–root interface can replenish the moisture being depleted to supply, under non-stressed conditions, the atmospheric water demand. This flux is dominated by the local momentary value of the soil's bulk hydraulic conductivity, K r, and it stays constant for a certain range of K r values, controlled by the increasing root suction. A decrease in water availability to the plant appears for longer irrigation intervals as a break in the constant soil-moisture depletion rate during stage 4. This break is better correlated to a threshold K r value than to threshold values of moisture content or suction. Therefore, it is suggested that moisture content or suction used to measure water availability or to control irrigation first be alibrated by K r() or K r() curves, respectively.  相似文献   
105.
Compartmentalization of the cytoplasm by membranes should have a strong influence on the diffusion of macromolecules inside a cell, and we have studied how this could be reflected in fluorescence correlation spectroscopy (FCS) experiments. We derived the autocorrelation function measured by FCS for fluorescent particles diffusing close to a soft membrane, and show it to be the sum of two contributions: short timescale correlations come from the diffusion of the particles (differing from free diffusion because of the presence of an obstacle), whereas long timescale correlations arise from fluctuations of the membrane itself (which create intensity fluctuations by modulating the number of detected particles). In the case of thermal fluctuations this second type of correlation depends on the elasticity of the membrane. To illustrate this calculation, we report the results of FCS experiments carried out close to a vesicle membrane. The measured autocorrelation functions display very distinctly the two expected contributions, and allow both to recover the diffusion coefficient of the fluorophore and to characterize the membrane fluctuations in term of a bending rigidity. Our results show that FCS measurements inside cells can lead to erroneous values of the diffusion coefficient if the influence of membranes is not recognized.  相似文献   
106.
Meiosis is a particular example of a cell cycle, characterized by two successive divisions without an intervening interphase. Resumption of meiosis in oocytes is associated with activation of maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK). The activity of MPF declines during the transition between the two meiotic divisions, whereas the activity of MAPK is sustained. Attempts to disclose the interplay between these key regulators of meiosis in both amphibian and mammalian oocytes generated contradictory results. Furthermore, the enzyme that governs the suppression of interphase in mammals is still unidentified. To our knowledge, we provide herein the first demonstration in a mammalian system that inhibition of MPF at reinitiation of meiosis abrogated Mos expression and MAPK activation. We also show that oocytes, in which reactivation of MPF at completion of the first telophase was prevented, exhibited an interphase nucleus with decondensed chromosomes. Inhibition of MAPK did not interfere with the progression to the second meiotic metaphase but, rather, resulted in parthenogenic activation. We conclude that in rat oocytes, MPF regulates MAPK activation and its timely reactivation prevents the oocytes from entering interphase.  相似文献   
107.
Key participants in G protein-coupled receptor (GPCR) signaling are the mitogen-activated protein kinase (MAPK) signaling cascades. The mechanisms involved in the activation of the above cascades by GPCRs are not fully elucidated. A prototypic GPCR that has been widely used to study these signaling mechanisms is the receptor for gonadotropin-releasing hormone (GnRHR), which serves as a key regulator of the reproductive system. Here we expressed GnRHR in COS7 cells and found that GnRHR transmits its signals to MAPKs mainly via G alpha i, EGF receptor without the involvement of Hb-EGF, and c-Src, but independently of PKCs. The main pathway that leads to JNK activation downstream of the EGF receptor involves a sequential activation of c-Src and phosphatidylinositol 3-kinase (PI3K). ERK activation by GnRHR is mediated by the EGF receptor, which activates Ras either directly or via c-Src. Besides the main pathway, the dissociated G beta gamma and beta-arrestin may initiate additional, albeit minor, pathways that lead to MAPK activation in the transfected COS7 cells. The pathways detected are significantly different from those in other cell lines bearing GnRHR, indicating that GnRH can utilize various signaling mechanisms for the activation of MAPK cascades. The unique pathway elucidated here in which c-Src and PI3K are sequentially activated downstream of the EGF receptor may serve as a prototype of signaling mechanisms by GnRHR and by additional GPCRs in various cell types.  相似文献   
108.
109.
Despite being the number one fruit crop in the world, very little is known about the phylogeny and molecular biology of banana (Musa spp.). Six banana rbcS gene families encoding the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from six different Musa spp. are presented. For a comprehensive phylogenetic study using Musa rbcS genes, a total of 57 distinct rbcS sequences was isolated from six accessions that contained different combinations of the A and B ancestral/parental genomes. As a result, five of the six members of the rbcS gene family could be affiliated with the A and/or B Musa genomes and at least three of the six gene families most likely existed before Musa A and B genomes separated. By combining sequence data with quantitative real-time PCR it was determined that the different Musa rbcS gene family members are also often multiply represented in each genome, with the highest copy numbers in the B genome. Expression of some of the rbcS genes varied in intensity and in different tissues indicating differences in regulation. To analyse and compare regulatory sequences of Musa rbcS genes, promoter and terminator regions were cloned for three Musa rbcS genes. Transient transformation assays using promoter-reporter-terminator constructs in maize, wheat, and sugarcane demonstrated that the rbcS-Ma1, rbcS-Ma3, and rbcS-Ma5 promoters could be useful for transgene expression in heterologous expression systems. Furthermore, the rbcS-Ma1 terminator resulted in a 2-fold increase of transgene expression when directly compared with the widely used Nos terminator.  相似文献   
110.
ERK-regulated cell proliferation requires multiple phosphorylation events catalyzed first by MEK and then by casein kinase 2 (CK2), followed by interaction with importin7 and subsequent nuclear translocation of pERK. We report that genetic manipulation of a core component of the actin filaments of cancer cells, the tropomyosin Tm5NM1, regulates the proliferation of normal cells both in vitro and in vivo. Mouse embryo fibroblasts (MEFs) lacking Tm5NM1, which have reduced proliferative capacity, are insensitive to inhibition of ERK by peptide and small-molecule inhibitors, indicating that ERK is unable to regulate proliferation of these knockout (KO) cells. Treatment of wild-type MEFs with a CK2 inhibitor to block phosphorylation of the nuclear translocation signal in pERK resulted in greatly decreased cell proliferation and a significant reduction in the nuclear translocation of pERK. In contrast, Tm5NM1 KO MEFs, which show reduced nuclear translocation of pERK, were unaffected by inhibition of CK2. This suggested that it is nuclear translocation of CK2-phosphorylated pERK that regulates cell proliferation and this capacity is absent in Tm5NM1 KO cells. Proximity ligation assays confirmed a growth factor–stimulated interaction of pERK with Tm5NM1 and that the interaction of pERK with importin7 is greatly reduced in the Tm5NM1 KO cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号