首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2559篇
  免费   246篇
  2805篇
  2022年   22篇
  2021年   32篇
  2019年   34篇
  2018年   30篇
  2017年   32篇
  2016年   53篇
  2015年   108篇
  2014年   99篇
  2013年   130篇
  2012年   144篇
  2011年   150篇
  2010年   68篇
  2009年   82篇
  2008年   94篇
  2007年   108篇
  2006年   95篇
  2005年   78篇
  2004年   84篇
  2003年   86篇
  2002年   102篇
  2001年   67篇
  2000年   66篇
  1999年   61篇
  1998年   33篇
  1997年   32篇
  1996年   30篇
  1995年   22篇
  1994年   24篇
  1993年   18篇
  1992年   48篇
  1991年   48篇
  1990年   42篇
  1989年   47篇
  1988年   31篇
  1987年   40篇
  1986年   30篇
  1985年   26篇
  1984年   32篇
  1983年   35篇
  1982年   23篇
  1981年   20篇
  1980年   19篇
  1979年   28篇
  1978年   19篇
  1977年   20篇
  1976年   21篇
  1975年   33篇
  1974年   26篇
  1973年   25篇
  1972年   19篇
排序方式: 共有2805条查询结果,搜索用时 15 毫秒
141.
The zebrafish has become a valuable vertebrate model organism in a wide range of scientific disciplines, but current information concerning the physiological temperature response of adult zebrafish is rather scarce. In this study, zebrafish were experimentally acclimated for 28 days to 18, 26 or 34 °C and a suite of non-invasive and invasive methods was applied to determine the thermal dependence of zebrafish physiological condition. With decreasing temperature, the metabolic rate of zebrafish decreased, as shown by the decreasing oxygen uptake and ammonia excretion rates, limiting the critical swimming speed, probably due to a decreased muscle fibre power output. In response to exercise, fuel stores were mobilized to the liver as shown by the increased hepatosomatic index, liver total absolute energetic value and liver carbohydrate concentration but due to the low metabolic rate they could not be adequately addressed to power swimming activity at 18 °C. Conversely, the increased metabolic performance at high temperature came with an increased metabolic cost resulting in decreased energy status reflected particularly well by the non-invasive condition factor and invasive measures of carcass protein concentration, carcass total absolute energetic value and liver carbohydrate concentration. We showed that the combined measurement of the relative condition factor and critical swimming speed is a powerful non-invasive tool for long-term follow-up studies. Invasive methods were redundant for measuring general energy status but they provided detailed information concerning metabolic reorganization. With this study we proved that the usefulness of the zebrafish as a model organism can easily be expanded to include physiological studies and we provided a reference dataset for the selection of measures of physiological responses for future studies using the zebrafish.  相似文献   
142.
In natural environments, predation risk varies over time. The risk allocation hypothesis predicts that prey is expected to adjust key anti‐predator behaviours such as vigilance to temporal variation in risk. We tested the predictions of the risk allocation hypothesis in a natural environment where both a species‐rich natural predator community and human hunters are abundant and where the differences in seasonal and circadian activity between natural and anthropogenic predators provided a unique opportunity to quantify the contributions of different predator classes to anti‐predator behaviour. Whereas natural predators were expected to show similar levels of activity throughout the seasons, hunter activity was high during the daytime during a clearly defined hunting season. According to the risk allocation hypothesis, vigilance should then be higher during the hunting season and during daytime hours than during the non‐hunting season and night‐time hours. Roe deer (Capreolus capreolus) on the edge of Bia?owie?a Primeval Forest in Eastern Poland displayed vigilance behaviour consistent with these predictions. The behavioural response of roe deer to temporarily varying predation risks emphasises the behavioural plasticity of this species and suggests that future studies of anti‐predator behaviour need to incorporate circadian variation in predation pressure as well as risk gradients of both natural and anthropogenic predators.  相似文献   
143.
The Shigella flexneri Type III secretion system (T3SS) senses contact with human intestinal cells and injects effector proteins that promote pathogen entry as the first step in causing life threatening bacillary dysentery (shigellosis). The Shigella Type III secretion apparatus (T3SA) consists of an anchoring basal body, an exposed needle, and a temporally assembled tip complex. Exposure to environmental small molecules recruits IpaB, the first hydrophobic translocator protein, to the maturing tip complex. IpaB then senses contact with a host cell membrane, forming the translocon pore through which effectors are delivered to the host cytoplasm. Within the bacterium, IpaB exists as a heterodimer with its chaperone IpgC; however, IpaB's structural state following secretion is unknown due to difficulties isolating stable protein. We have overcome this by coexpressing the IpaB/IpgC heterodimer and isolating IpaB by incubating the complex in mild detergents. Interestingly, preparation of IpaB with n‐octyl‐oligo‐oxyethylene (OPOE) results in the assembly of discrete oligomers while purification in N,N‐dimethyldodecylamine N‐oxide (LDAO) maintains IpaB as a monomer. In this study, we demonstrate that IpaB tetramers penetrate phospholipid membranes to allow a size‐dependent release of small molecules, suggesting the formation of discrete pores. Monomeric IpaB also interacts with liposomes but fails to disrupt them. From these and additional findings, we propose that IpaB can exist as a tetramer having inherent flexibility, which allows it to cooperatively interact with and insert into host cell membranes. This event may then lay the foundation for formation of the Shigella T3SS translocon pore.  相似文献   
144.
Allyl isothiocyanate (AITC) is a dietary component with possible anticancer effects, though much information about AITC and cancer has been obtained from cell studies. To investigate the effect of AITC on DNA integrity in vivo, a crossover study was conducted. Adults (n= 46) consumed AITC, AITC-rich vegetables [mustard and cabbage (M/C)] or a control treatment with a controlled diet for 10 days each. On day 11, volunteers provided blood and urine before and after consuming treatments. Volunteers were characterized for genotype for GSTM1 and GSTT1 (glutathione S-transferases) and XPD (DNA repair). DNA integrity in peripheral blood mononuclear cells was assessed by single-cell gel electrophoresis. Urine was analyzed for 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) and creatinine. Ten-day intake of neither AITC nor M/C resulted in statistically significant differences in DNA strand breaks [least squares mean (LSmean) % DNA in tail±S.E.M.: 4.8±0.6 for control, 5.7±0.7 for AITC, 5.3±0.6 for M/C] or urinary 8-oxodG (LSmean μg 8-oxodG/g creatinine±S.E.M.: 2.95±0.09 for control, 2.88±0.09 for AITC, 3.06±0.09 for M/C). Both AITC and M/C increased DNA strand breaks 3 h postconsumption (LSmean % DNA in tail±S.E.M.: 3.2±0.7 for control, 8.3±1.7 for AITC, 8.0±1.7 for M/C), and this difference disappeared at 6 h (4.2±0.9 for control, 5.7±1.2 for AITC, 5.5±1.2 for M/C). Genotypes for GSTM1, GSTT1 and XPD were not associated with treatment effects. In summary, DNA damage appeared to be induced in the short term by AITC and AITC-rich products, but that damage disappeared quickly, and neither AITC nor AITC-rich products affected DNA base excision repair.  相似文献   
145.
Thin slices of human tissues are characterized concerning reflection and transmission in a wavelength range from 400 to 1700 nm. The results are primarily useful to find a wavelength for the detection of subjacent blood vessels during surgical procedures, especially neurological surgery. The measurements have been conducted using a customized measuring station, utilizing two halogen bulb lamps and two spectrometers. This paper focuses on creating a data base with the optical properties of artery, brain, bone, nasal mucosa, and nerve. The spectral distributions are compared among each other, similarities and differences are pointed out. Each tissue has got unique spectral characteristics, whereas typical absorption bands can be found in the overall tissues, especially hemoglobin and water absorption bands. The reflectivity maxima are typically located in the red or near‐infrared. All the transmission maxima are located between 1075 nm and 1100 nm. The measurements have been conducted at the Institute of Anatomy at the University of Leipzig. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
146.
147.
The biochemical half maximal inhibitory concentration (IC50) is the most commonly used metric for on-target activity in lead optimization. It is used to guide lead optimization, build large-scale chemogenomics analysis, off-target activity and toxicity models based on public data. However, the use of public biochemical IC50 data is problematic, because they are assay specific and comparable only under certain conditions. For large scale analysis it is not feasible to check each data entry manually and it is very tempting to mix all available IC50 values from public database even if assay information is not reported. As previously reported for Ki database analysis, we first analyzed the types of errors, the redundancy and the variability that can be found in ChEMBL IC50 database. For assessing the variability of IC50 data independently measured in two different labs at least ten IC50 data for identical protein-ligand systems against the same target were searched in ChEMBL. As a not sufficient number of cases of this type are available, the variability of IC50 data was assessed by comparing all pairs of independent IC50 measurements on identical protein-ligand systems. The standard deviation of IC50 data is only 25% larger than the standard deviation of Ki data, suggesting that mixing IC50 data from different assays, even not knowing assay conditions details, only adds a moderate amount of noise to the overall data. The standard deviation of public ChEMBL IC50 data, as expected, resulted greater than the standard deviation of in-house intra-laboratory/inter-day IC50 data. Augmenting mixed public IC50 data by public Ki data does not deteriorate the quality of the mixed IC50 data, if the Ki is corrected by an offset. For a broad dataset such as ChEMBL database a Ki- IC50 conversion factor of 2 was found to be the most reasonable.  相似文献   
148.

Purpose

Small injection ports for mice are increasingly used for drug testing or when administering contrast agents. Commercially available mini-ports are expensive single-use items that cause imaging-artifacts. We developed and tested an artifact-free, low-cost, vascular access mini-port (VAMP) for mice.

Procedures

Leakage testing of the VAMP was conducted with high speed bolus injections of different contrast agents. VAMP-induced artifacts were assessed using a micro-CT and a small animal MRI (9.4T) scanner ex vivo. Repeated contrast administration was performed in vivo.

Results

With the VAMP there was no evidence of leakage with repeated punctures, high speed bolus contrast injections, and drawing of blood samples. In contrast to the tested commercially available ports, the VAMP did not cause artifacts with MRI or CT imaging.

Conclusions

The VAMP is an alternative to commercially available mini-ports and has useful applications in animal research involving imaging procedures and contrast agent testing.  相似文献   
149.
Glial cell line-derived neurotrophic factor (GDNF) is a potent survival and regeneration-promoting factor for dopaminergic neurons in cell and animal models of Parkinson disease (PD). GDNF is currently tested in clinical trials on PD patients with so far inconclusive results. The receptor tyrosine kinase Ret is the canonical GDNF receptor, but several alternative GDNF receptors have been proposed, raising the question of which signaling receptor mediates here the beneficial GDNF effects. To address this question we overexpressed GDNF in the striatum of mice deficient for Ret in dopaminergic neurons and subsequently challenged these mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Strikingly, in this established PD mouse model, the absence of Ret completely abolished GDNF''s neuroprotective and regenerative effect on the midbrain dopaminergic system. This establishes Ret signaling as absolutely required for GDNF''s effects to prevent and compensate dopaminergic system degeneration and suggests Ret activation as the primary target of GDNF therapy in PD.Glial cell line-derived neurotrophic factor (GDNF) is the founding member of the four ligands in the GDNF family, which belong to the transforming growth factor-β superfamily.1 GDNF was characterized as a potent survival factor for many neurons in culture such as dopaminergic, motor, sympathetic, parasympathetic, sensory and enteric neurons.1, 2 In addition, in dopaminergic neuron cultures GDNF stimulates neuronal differentiation, neurite outgrowth, synapse formation and dopamine release.1, 2As degeneration of midbrain dopaminergic neurons in the substantia nigra pars compacta (SNpc) represents a major hallmark of Parkinson disease (PD), the most common neurodegenerative movement disorder, GDNF has raised considerable interest as a therapeutic molecule for the treatment of PD.3, 4, 5 PD affects >2% of individuals over the age of 60 years, but no curative treatment is available to date, mainly due to a lack of understanding disease etiology.6, 7, 8 Preclinical studies in the established 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA) rodent and primate models of PD demonstrated a substantial neuroprotection and regeneration effect by striatal provided GDNF or its close relative neurturin.3, 4, 9 However, clinical phase II trials on PD patients using GDNF or neurturin did so far not convincingly recapitulate their beneficial effects on the dopaminergic system in humans most likely due to technical problems and the selection of advanced PD patients.10, 11, 12, 13GDNF signaling is highly complex as this neurotrophic factor can bind to a variety of receptors, thus being able to induce pleiotropic effects. GDNF efficiently binds to the GPI-linked GDNF family receptor α1 (GFRα1).1, 2 It has been shown that the GDNF/GFRα1 complex can activate not only the canonical GDNF receptor Ret, a receptor tyrosine kinase which signals through the sarcoma protein (Src)/rat sarcoma (Ras)/mitogen-activated protein kinase (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt, NF-κB (nuclear factor ''kappa-light-chain-enhancer'' of activated B cells), JNK (c-Jun N-terminal kinases) and PLCγ (phospholipase γ) pathway, but also with other signaling inducing receptors.1, 2, 4, 5, 13 So far, at least four alternative GDNF receptors have been described which are all expressed in midbrain dopaminergic neurons, NCAM,14, 15 the integrins αV and βI,14, 16 syndecan 317 and N-cadherin.18 Interestingly, Ret is not essential during pre- and postnatal development of the mouse dopaminergic system,19, 20, 21, 22, 23 but specifically required for the maintenance of SNpc dopaminergic neurons and their striatal innervation in aged mice.23, 24, 25 In contrast, GDNF seems most likely under physiological conditions to be dispensable during development and maintenance of midbrain dopaminergic neurons in mice, although conflicting results exist.26, 27, 28 Thus, Ret might be activated by a GDNF-independent mechanism to stimulate SNpc dopaminergic neuron survival. In addition, the in vivo function of the alternative GDNF receptors in the dopaminergic system under physiological and pathophysiological conditions, like PD, and their dependence on GDNF has not yet been addressed in detail. This raised the important question which GDNF receptor might be required to mediate GDNF''s reported neuroprotective and regenerative effect in the dopaminergic system in PD animal models and potentially in PD patients.5, 29Previously, we showed in dopaminergic neuron-specific Ret knockout mice that Ret receptor loss does not result in a higher vulnerability of midbrain dopaminergic neurons against MPTP but to less resprouting of left over dopaminergic neuron axons in the striatum after MPTP intoxication.30 In adult mice endogenous GDNF levels are rather low.26, 31 Therefore, we could not rule out in that study the possibility, that higher levels of GDNF—as also used in the clinical GDNF trials in PD patients—might have neuroprotective and regenerating effects even in the absence of the Ret receptor. Here we addressed now this question by viral overexpression of GDNF in MPTP-treated mice lacking expression of Ret again specifically in dopaminergic neurons.23, 30 We found that in the absence of Ret in dopaminergic neurons even a substantial overexpression of GDNF in the striatum does not have a neuroprotective and regenerative effect. Thus, despite the expression of alternative GDNF receptors on midbrain dopaminergic neurons, the presence of the canonical GDNF receptor Ret seems to be mandatory for mediating GDNF''s beneficial survival and axonal resprouting effect in these neurons.  相似文献   
150.
BackgroundFive-to-eighteen percent of pregnancies worldwide end in preterm birth, which is the major cause of neonatal death and morbidity. Approximately 30% of the variation in gestational age at birth can be attributed to genetic factors. Genome-wide association studies (GWAS) have not shown robust evidence of association with genomic loci yet.MethodsWe separately investigated 1921 Norwegian mothers and 1199 children from pregnancies with spontaneous onset of delivery. Individuals were further divided based on the onset of delivery: initiated by labor or prelabor rupture of membranes. Genetic association with ultrasound-dated gestational age was evaluated using three genetic models and adaptive permutations. The top-ranked loci were tested for enrichment in 12 candidate gene-sets generated by text-mining PubMed abstracts containing pregnancy-related keywords.ResultsThe six GWAS did not reveal significant associations, with the most extreme empirical p = 5.1 × 10−7. The top loci from maternal GWAS with deliveries initiated by labor showed significant enrichment in 10 PubMed gene-sets, e.g., p = 0.001 and 0.005 for keywords "uterus" and "preterm" respectively. Enrichment signals were mainly caused by infection/inflammation-related genes TLR4, NFKB1, ABCA1, MMP9. Literature-informed analysis of top loci revealed further immunity genes: IL1A, IL1B, CAMP, TREM1, TFRC, NFKBIA, MEFV, IRF8, WNT5A.ConclusionOur analyses support the role of inflammatory pathways in determining pregnancy duration and provide a list of 32 candidate genes for a follow-up work. We observed that the top regions from GWAS in mothers with labor-initiated deliveries significantly more often overlap with pregnancy-related genes than would be expected by chance, suggesting that increased sample size would benefit similar studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号