首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   26篇
  2022年   5篇
  2021年   6篇
  2020年   4篇
  2019年   3篇
  2018年   6篇
  2017年   2篇
  2016年   4篇
  2015年   13篇
  2014年   17篇
  2013年   16篇
  2012年   30篇
  2011年   20篇
  2010年   15篇
  2009年   18篇
  2008年   22篇
  2007年   16篇
  2006年   12篇
  2005年   11篇
  2004年   20篇
  2003年   9篇
  2002年   11篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   7篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有305条查询结果,搜索用时 46 毫秒
291.
This work investigates the role of charge of the phosphorylated aspartate, Asp369, of Na+,K+-ATPase on E1E2 conformational changes. Wild type (porcine α1/His101), D369N/D369A/D369E, and T212A mutants were expressed in Pichia pastoris, labeled with fluorescein 5′-isothiocyanate (FITC), and purified. Conformational changes of wild type and mutant proteins were analyzed using fluorescein fluorescence (Karlish, S. J. (1980) J. Bioenerg. Biomembr. 12, 111–136). One central finding is that the D369N/D369A mutants are strongly stabilized in E2 compared with wild type and D369E or T212A mutants. Stabilization of E2(Rb) is detected by a reduced K0.5Rb for the Rb+-induced E1E2(2Rb) transition. The mechanism involves a greatly reduced rate of E2(2Rb) → E1Na with no effect on E1E2(2Rb). Lowering the pH from 7.5 to 5.5 strongly stabilizes wild type in E2 but affects the D369N mutant only weakly. Thus, this “Bohr” effect of pH on E1E2 is due largely to protonation of Asp369. Two novel effects of phosphate and vanadate were observed with the D369N/D369A mutants as follows. (a) E1E2·P is induced by phosphate without Mg2+ ions by contrast with wild type, which requires Mg2+. (b) Both phosphate and vanadate induce rapid E1E2 transitions compared with slow rates for the wild type. With reference to crystal structures of Ca2+-ATPase and Na+,K+-ATPase, negatively charged Asp369 favors disengagement of the A domain from N and P domains (E1), whereas the neutral D369N/D369A mutants favor association of the A domain (TGES sequence) with P and N domains (E2). Changes in charge interactions of Asp369 may play an important role in triggering E1P(3Na) ↔ E2P and E2(2K) → E1Na transitions in native Na+,K+-ATPase.  相似文献   
292.
Hyperlipidemia enhances xanthine oxidase (XO) activity. XO is an important source of reactive oxygen species (ROS). Since ROS are thought to promote atherosclerosis, we hypothesized that XO is involved in the development of atherosclerosis. ApoE(-/-) mice were fed a Western-type (WD) or control diet. In subgroups, tungsten (700 mg/L) was administered to inhibit XO. XO is a secreted enzyme which is formed in the liver as xanthine dehydrogenase (XDH) and binds to the vascular endothelium. High expression of XDH was found in the liver and WD increased liver XDH mRNA and XDH protein expression. WD induced the conversion of XDH to the radical-forming XO. Moreover, WD increased the hepatic expression of CD40, demonstrating activation of hepatic cells. Aortic tissue of ApoE(-/-) mice fed a WD for 6 months exhibited marked atherosclerosis, attenuated endothelium-dependent relaxation to acetylcholine, increased vascular oxidative stress, and mRNA expression of the chemokine KC. Tungsten treatment had no effect on plasma lipids but lowered the plasma XO activity. In animals fed a control diet, tungsten had no effect on radical formation, endothelial function, or atherosclerosis development. In mice fed a WD, however tungsten attenuated the vascular superoxide anion formation, prevented endothelial dysfunction, and attenuated KC mRNA expression. Most importantly, tungsten treatment largely prevented the development of atherosclerosis in the aorta of ApoE(-/-) mice on WD. Therefore, tungsten, potentially via the inhibition of XO, prevents the development of endothelial dysfunction and atherosclerosis in ApoE(-/-) mice on WD.  相似文献   
293.
It has been suggested that phosphorylation at serine 9 near the N-terminus of glycogen synthase kinase-3β (GSK-3β) mimics the prephosphorylation of its substrate and, therefore, the N-terminus functions as a pseudosubstrate. The molecular basis for the pseudosubstrate's binding to the catalytic core and autoinhibition has not been fully defined. Here, we combined biochemical and computational analyses to identify the potential residues within the N-terminus and the catalytic core engaged in autoinhibition of GSK-3β. Bioinformatic analysis found Arg4, Arg6, and Ser9 in the pseudosubstrate sequence to be extremely conserved through evolution. Mutations at Arg4 and Arg6 to alanine enhanced GSK-3β kinase activity and impaired its ability to autophosphorylate at Ser9. In addition, and unlike wild-type GSK-3β, these mutants were unable to undergo autoinhibition by phosphorylated Ser9. We further show that Gln89 and Asn95, located within the catalytic core, interact with the pseudosubstrate. Mutation at these sites prevented inhibition by phosphorylated Ser9. Furthermore, the respective mutants were not inhibited by a phosphorylated pseudosubstrate peptide inhibitor. Finally, computational docking of the pseudosubstrate into the catalytic active site of the kinase suggested specific interactions between Arg6 and Asn95 and of Arg4 to Asp181 (apart from the interaction of phosphorylated serine 9 with the “phosphate binding pocket”). Altogether, our study supports a model of GSK-3-pseudosubstrate autoregulation that involves phosphorylated Ser9, Arg4, and Arg6 within the N-terminus and identified the specific contact sites within the catalytic core.  相似文献   
294.
295.
296.
In Escherichia coli a UGA codon can be efficiently suppressedby a suppressor tRNATrp called Su9. Here, we show that the levelof UGA suppression is determined by the nature of the nucleotideat the 5' side of the anticodon of the suppressor (position33). UGA suppression occurs when a pyrimidine residue is locatedin position 33 of the tRNA, and suppression is more efficientwith a U than with a C in this position. On the other hand,when a purine residue is located at this position UGA suppressionis extremely low. These results show that in the case of tRNASu9, the UGA codon context effect does not require base pairingbetween the nucleotide at the 3' side of the codon and the 5'side of the anticodon.  相似文献   
297.
Chinese hamster ovary (CHO) cells are routinely used in the biopharmaceutical industry for production of therapeutic monoclonal antibodies (mAbs). Although multiple offline and time-consuming measurements of spent media composition and cell viability assays are used to monitor the status of culture in biopharmaceutical manufacturing, the day-to-day changes in the cellular microenvironment need further in-depth characterization. In this study, two-photon fluorescence lifetime imaging microscopy (2P-FLIM) was used as a tool to directly probe into the health of CHO cells from a bioreactor, exploiting the autofluorescence of intracellular nicotinamide adenine dinucleotide phosphate (NAD(P)H), an enzymatic cofactor that determines the redox state of the cells. A custom-built multimodal microscope with two-photon FLIM capability was utilized to monitor changes in NAD(P)H fluorescence for longitudinal characterization of a changing environment during cell culture processes. Three different cell lines were cultured in 0.5 L shake flasks and 3 L bioreactors. The resulting FLIM data revealed differences in the fluorescence lifetime parameters, which were an indicator of alterations in metabolic activity. In addition, a simple principal component analysis (PCA) of these optical parameters was able to identify differences in metabolic progression of two cell lines cultured in bioreactors. Improved understanding of cell health during antibody production processes can result in better streamlining of process development, thereby improving product titer and verification of scale-up. To our knowledge, this is the first study to use FLIM as a label-free measure of cellular metabolism in a biopharmaceutically relevant and clinically important CHO cell line.  相似文献   
298.
299.
M13 DNA was used as a source for single and double-stranded DNA. Free radical-induced damage to single and double stranded DNA was caused by asorbateliron and ascorbate/copper oxidative systems. The degree of breakage was estimated by running samples on an agarose gel and staining with ethidium bromide, followed by photographic analysis. DflA breakage was dependent on time and concentration of iron or copper ions. Zincions protected against damage caused by iron/asorbate both to single-stranded and double-stranded DNA. In contrast, in the copper/ascorbate system zinc ions protected only against the double-stranded DNA (replicative form of M13) breakage, and not against copper-mediated single-stranded DNA breakages. It seemed to amplify the efficiency of breakage. The protection provided to the replicative form in the copper/ascorbate system is much less effective than the protection to DNA in the iron/ascorbate system. These results support the notion that redox-inactive metal ions, that compete for iron or copper binding sites, could provide protection against transition metal-mediated and free radical-induced damage.  相似文献   
300.
Decreased mobility of the human eardrum, the tympanic membrane (TM), is an essential indicator of a prevalent middle ear infection. The current diagnostic method to assess TM mobility is via pneumatic otoscopy, which provides subjective and qualitative information of subtle motion. In this study, a handheld spectral-domain pneumatic optical coherence tomography system was developed to simultaneously measure the displacement of the TM, air pressure inputs applied to a sealed ear canal, and to perform digital pneumatic otoscopy. A novel approach based on quantitative parameters is presented to characterize spatial and temporal variations of the dynamic TM motion. Furthermore, the TM motions of normal middle ears are compared with those of ears with middle ear infections. The capability of noninvasively measuring the rapid motion of the TM is beneficial to understand the complex dynamics of the human TM, and can ultimately lead to improved diagnosis and management of middle ear infections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号