首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   969篇
  免费   68篇
  国内免费   70篇
  1107篇
  2024年   2篇
  2023年   14篇
  2022年   41篇
  2021年   61篇
  2020年   46篇
  2019年   49篇
  2018年   43篇
  2017年   32篇
  2016年   61篇
  2015年   53篇
  2014年   77篇
  2013年   84篇
  2012年   88篇
  2011年   74篇
  2010年   55篇
  2009年   56篇
  2008年   59篇
  2007年   38篇
  2006年   38篇
  2005年   19篇
  2004年   22篇
  2003年   18篇
  2002年   3篇
  2001年   14篇
  2000年   5篇
  1999年   15篇
  1998年   3篇
  1997年   1篇
  1996年   7篇
  1995年   2篇
  1994年   3篇
  1993年   6篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有1107条查询结果,搜索用时 18 毫秒
101.
We investigated the role of some key regulators of cell cycle in the activation of caspases during apoptosis of insulin-secreting cells after sustained depletion of GTP by a specific inosine 5'-monophosphate dehydrogenase inhibitor, mycophenolic acid (MPA). p21(Waf1/Cip1) was significantly increased following MPA treatment, an event closely correlated with the time course of caspase activation under the same conditions. MPA-induced p21(Waf1/Cip1) was not mediated by p53, since p53 mass was gradually reduced over time of MPA treatment. The increment of p21(Waf1/Cip1) by MPA was further enhanced in the presence of a pan-caspase inhibitor, indicating that the increased p21(Waf1/Cip1) may occur prior to caspase activation. This notion of association of p21(Waf1/Cip1) accumulation with caspase activation and apoptosis was substantiated by using mimosine, a selective p21(Waf1/Cip1) inducer independent of p53. Mimosine, like MPA, also increased p21(Waf1/Cip1), promoted apoptosis and simultaneously increased the activity of caspases. Furthermore, knocking down of p21(Waf1/Cip1) transfection of siRNA duplex inhibited caspase activation and apoptosis due to GTP depletion. In contrast to p21(Waf1/Cip1), a reduction in p27(Kip1) occurred in MPA-treated cells. These results indicate that p21(Waf1/Cip1) may act as an upstream signal to block mitogenesis and activate caspases which in turn contribute to induction of apoptosis.  相似文献   
102.
Solid polymer electrolytes as one of the promising solid‐state electrolytes have received extensive attention due to their excellent flexibility. However, the issues of lithium (Li) dendrite growth still hinder their practical applications in solid‐state batteries (SSBs). Herein, composite electrolytes from “ceramic‐in‐polymer” (CIP) to “polymer‐in‐ceramic” (PIC) with different sizes of garnet particles are investigated for their effectiveness in dendrite suppression. While the CIP electrolyte with 20 vol% 200 nm Li6.4La3Zr1.4Ta0.6O12 (LLZTO) particles (CIP‐200 nm) exhibits the highest ionic conductivity of 1.6 × 10?4 S cm?1 at 30 °C and excellent flexibility, the PIC electrolyte with 80 vol% 5 µm LLZTO (PIC‐5 µm) shows the highest tensile strength of 12.7 MPa. A sandwich‐type composite electrolyte (SCE) with hierarchical garnet particles (a PIC‐5 µm interlayer sandwiched between two CIP‐200 nm thin layers) is constructed to simultaneously achieve dendrite suppression and excellent interfacial contact with Li metal. The SCE enables highly stable Li plating/stripping cycling for over 400 h at 0.2 mA cm?2 at 30 °C. The LiFePO4/SCE/Li cells also demonstrate excellent cycle performance at room temperature. Fabricating sandwich‐type composite electrolytes with hierarchical filler designs can be an effective strategy to achieve dendrite‐free SSBs with high performance and high safety at room temperature.  相似文献   
103.
Graft-versus-host disease (GVHD) induced by host antigen-presenting cells (APCs) and donor-derived T cells remains the major limitation of allogeneic bone marrow transplantation (allo-BMT). Notch signaling pathway is a highly conserved cell-cell communication that is important in T cell development. Recently, Notch signaling pathway is reported to be involved in regulating GVHD. To investigate the role of Notch inhibition in modulating GVHD, we established MHC-mismatched murine allo-BMT model. We found that inhibition of Notch signaling pathway by γ-secretase inhibitor in vivo could reduce aGVHD, which was shown by the onset time of aGVHD, body weight, clinical aGVHD scores, pathology aGVHD scores, and survival. Inhibition of Notch signaling pathway by DAPT ex vivo only reduced pathology aGVHD scores in the liver and intestine and had no impact on the onset time and clinical aGVHD scores. We investigated the possible mechanism by analyzing the phenotype of host APCs and donor-derived T cells. Notch signaling pathway had a broad effect on both host APCs and donor-derived T cells. The expressions of CD11c, CD40, and CD86 as the markers of activated dendritic cells (DCs) were decreased. The proliferative response of CD8+ T cell decreased, while CD4+ Notch-deprived T cells had preserved expansion with increased expressions of CD25 and Foxp3 as markers of regulatory T cells (Tregs). In conclusion, Notch inhibition may minimize aGVHD by decreasing proliferation and activation of DCs and CD8+ T cells while preserving Tregs expansion.  相似文献   
104.
105.
Zhu Y  Zhang W  Huo Z  Zhang Y  Xia Y  Li B  Kong X  Hu L 《Human genetics》2007,121(1):113-123
Human isolated gingival fibromatosis is an oral disorder characterized by a slowly progressive benign enlargement of gingival tissues. The most common genetic form, hereditary gingival fibromatosis (HGF), is usually transmitted as an autosomal dominant trait. We report here for the first time a newly identified maternally inherited gingival fibromatosis in two unrelated Chinese families and mapped this disease locus to human chromosome 11p15 with a maximum two point LOD score of 8.70 at D11S4046 (θ = 0) for family 1 and of 6.02 at D11S1318 for family 2. Haplotype analysis placed the critical region in the interval defined by D11S1984 and D11S1338. A cluster of maternally expressed genes is within this critical region. We screened individuals in these two families for mutations for all known maternally expressed genes within this region. None was found either within the coding sequence or at the intron–exon boundary of these genes. Neither did we detect any loss of imprinting in three informative imprinted genes including H19, KCNQ1 downstream neighbor (KCNQ1DN) and cyclin-dependent kinase inhibitor 1C (CDKN1C). However, gene expression profile analysis revealed reduced expression of hemoglobin beta (HBB), hemoglobin delta (HBD), hemoglobin gamma A (HBG1) and hemoglobin gamma G (HBG2) genes at disease locus in HGF patients. This study suggests that genome imprinting might affect the development of HGF. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. Conflict Of Interest Statement: No competing financial interests.  相似文献   
106.
107.
108.
Mechanical properties of cell membranes are known to be significantly influenced by the underlying cortical cytoskeleton. The technique of pulling membrane tethers from cells is one of the most effective ways of studying the membrane mechanics and the membrane-cortex interaction. In this article, we show that axon membranes make an interesting system to explore as they exhibit both free membrane-like behavior where the tether-membrane junction is movable on the surface of the axons (unlike many other cell membranes) as well as cell-like behavior where there are transient and spontaneous eruptions in the tether force that vanish when F-actin is depolymerized. We analyze the passive and spontaneous responses of axonal membrane tethers and propose theoretical models to explain the observed behavior.  相似文献   
109.
Nitrogen (N) fixing Klebsiella pneumoniae RSN19 has high inorganic phosphorus (P) solubilizing capability, but its N2-fixing capability is limited. In order to acquire a P-solubilizing mutant strain with high efficiency N-fixing capability, different microwave irradiation intensities and durations were tested on RSN19 in an attempt to produce mutants with improved N2-fixation and P-solubilization capabilities. The effect of microwave irradiation power and time were studied and the microwave mutagenesis parameters were optimized. Nitrogenase activity was tested on the mutant strains by acetylene reduction method; and their P-solubilizing capability and genetic stability were determined. The results indicated that the best conditions for microwave mutagenesis that produced better performed mutant strains were 250W, 36 s. Under these conditions a maximum positive mutation rate of 1.66% was obtained, resulting in five genetically stable strains with promoted nitrogenase activity which was designated as RSM-219, RSM-206, RSM-224, RSM-225 and RSM-275. Subculture tests showed that RSM-219 and RSM-206 were genetically stable mutant strains with higher nitrogenase activity and phosphate solubilizing capabilities than the original strain. Both RSM-219 and RSM-206 performed better than the original strain under N-free conditions when supplied with calcium phosphate only, and produced greater increases in the biomass of alfalfa seedlings.  相似文献   
110.
微滴培养技术在卵母细胞培养和胚胎早期发育研究中有广泛的应用.近期研究发现这项技术又有新的应用范围.有科学家发现将该技术应用于胚胎干细胞可以实现高效传代,在精原干细胞培养和精子发生相关过程的研究方面也可取得很好效果,同时,对早期人类胚胎干细胞的分离过程的监控和对精原干细胞生长过程的观察也相对容易.这些研究结果显示,微滴培养技术在这些新领域的研究与常规培养方法相比具有独特的优势.回顾微滴培养技术的主要发展过程,重点探讨微滴培养技术的最新应用及其优点.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号