首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12665篇
  免费   1099篇
  国内免费   1322篇
  2024年   19篇
  2023年   157篇
  2022年   425篇
  2021年   738篇
  2020年   467篇
  2019年   563篇
  2018年   485篇
  2017年   422篇
  2016年   528篇
  2015年   767篇
  2014年   929篇
  2013年   994篇
  2012年   1196篇
  2011年   1010篇
  2010年   650篇
  2009年   667篇
  2008年   714篇
  2007年   611篇
  2006年   522篇
  2005年   451篇
  2004年   429篇
  2003年   410篇
  2002年   298篇
  2001年   237篇
  2000年   205篇
  1999年   217篇
  1998年   171篇
  1997年   116篇
  1996年   110篇
  1995年   93篇
  1994年   84篇
  1993年   44篇
  1992年   78篇
  1991年   57篇
  1990年   47篇
  1989年   24篇
  1988年   29篇
  1987年   30篇
  1986年   20篇
  1985年   41篇
  1984年   11篇
  1983年   7篇
  1982年   4篇
  1981年   4篇
  1980年   1篇
  1979年   2篇
  1973年   1篇
  1967年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
本研究运用傅里叶变换红外光谱法,采集7份不同产地甜茶叶片的FTIR图谱,结合相关性系数和二阶导数方法对其红外光谱特征进行指认,并比较各供试甜茶的红外指纹图谱及甜茶苷含量间差异。研究结果表明,依据不同产地甜茶红外指纹图谱特征,可以将其归结为3大类Ⅰ类包括:金秀、荔浦、平南、象州及永福等地的甜茶,相关系数在0.992~0.999间;Ⅱ类包括第Ⅰ类型以外的广西其它采集地区的甜茶,相关性系数主要集中在0.984~0.990之间;Ⅲ类包括广东分布区,该区甜茶与广西分布区甜茶的相关系数均在0.986以下。供试甜茶与甜茶苷标准品的光谱特征比较结果表明,不同产地甜茶甜茶苷含量有较大差异。其中,广西金秀和广西平南产的甜茶叶片中甜茶苷含量最高,广西岑溪产的甜茶叶片中甜茶苷含量最低。所以,运用FTIR技术可以对不同产地甜茶进行分析并快速鉴别出不同产地甜茶中甜茶苷含量差异。本研究结果对广西地区甜茶的引种驯化和合理开发利用有一定指导意义。  相似文献   
942.
A recombinant gene expressing a Cry1Ac-GFP fusion protein with a molecular mass of approximately 160 kD was constructed to investigate the expression of cry1Ac, the localization of its gene product Cry1Ac, and its role in crystal development in Bacillus thuringiensis. The cry1Ac-gfp fusion gene under the control of the cry1Ac promoter was cloned into the plasmid pHT304, and this construct was designated pHTcry1Ac-gfp. pHTcry1Ac-gfp was transformed into the crystal-negative strain, HD-73 cry, and the resulting strain was named HD-73(pHTcry1Ac-gfp). The gfp gene was then inserted into the large HD-73 endogenous plasmid pHT73 and fused with the 3′ terminal of the cry1Ac gene by homologous recombination, yielding HD-73Φ(cry1Ac-gfp)3534. Laser confocal microscopy and Western blot analyses showed for the first time that the Cry1Ac-GFP fusion proteins in both HD-73(pHTcry1Ac-gfp) and HD-73Φ(cry1Ac-gfp)3534 were produced during asymmetric septum formation. Surprisingly, the Cry1Ac-GFP fusion protein showed polarity and was located near the septa in both strains. There was no significant difference between Cry1Ac-GFP and Cry1Ac in their toxicity to Plutella xylostella larvae.  相似文献   
943.
Omega-3(ω-3) fatty acid desaturase transgenic pigs may improve carcass fatty acid composition. The use of transgenic pigs is also an excellent large animal model for studying the role of ω-3 fatty acids in the prevention and treatment of coronary heart disease and cancer. Transgenic pigs carrying synthesized fatty acid desaturase-1 gene (sFat-1) from Caenorhabditis briggsae by somatic cell nuclear transfer (SCNT) were produced for the first time in China. Porcine fetal fibroblast cells were transfected with a sFat-1 expression cassette by the liposome-mediated method. Transgenic embryos were reconstructed by nuclear transfer of positive cells into enucleated in vitro matured oocytes. A total of 1889 reconstructed embryos were transferred into 10 naturally cycling gilts. Nine early pregnancies were established, 7 of which went to term. Twenty-one piglets were born. The cloning efficiency was 1.1% (born piglets/transferred embryos). The integration of the sFat-1 gene was confirmed in 15 live cloned piglets by PCR and Southern blot except for 2 piglets. Expression of the sFat-1 gene in 12 of 13 piglets was detected with RT-PCR. The data demonstrates that an efficient system for sFat-1 transgenic cloned pigs was developed, which led to the successful production of piglets expressing the sFat-1 gene.  相似文献   
944.
The serine/threonine kinase, B-RAF, is frequently mutated in melanoma and is required for cell proliferation. Proteasomal turnover of cyclins and cyclin-dependent kinase inhibitors via E3 ubiquitin ligases regulates cell cycle progression. We previously showed that B-RAF regulates Cks1, a co-factor for the F-box protein Skp2. Recently, a second F-box protein cofactor was identified, αB-crystallin, that binds Fbx4 and promotes cyclin D1 degradation. Here, we demonstrate that αB-crystallin is down-regulated in mutant B-RAF melanoma cells compared to melanocytes in a B-RAF and MEK-dependent manner. In a subset of lines, MEK inhibition was sufficient to up-regulate αB-crystallin protein levels; whereas in other lines combined MEK and proteasome inhibition was required. αB-crystallin knockdown partially stabilized cyclin D1 in melanocytes. Expression of αB-crystallin in mutant B-RAF melanoma cells did not promote cyclin D1 turnover under normal conditions, but did enhance turnover following etoposide-induced DNA damage. Together, these data show that αB-crystallin is highly expressed in melanocytes contributing, in part, to cyclin D1 turnover. Furthermore, αB-crystallin is down-regulated in a B-RAF-dependent manner in melanoma cells and its re-expression regulates cyclin D1 turnover after DNA damage.  相似文献   
945.
Nutrient resorption from senescing leaves is an important mechanism of nutrient conservation in temperate deciduous forests. Resorption, however, may be curtailed by climatic events that cause rapid leaf death, such as severe drought, which has been projected to double by the year 2100 in the eastern United States. During a record drought in the southeastern US, we studied 18 common temperate winter-deciduous trees and shrubs to understand how extreme drought affects nutrient resorption of the macronutrients N, P, K, and Ca. Four species exhibited drought-induced leaf senescence and maintained higher leaf water potentials than the remaining 14 species (here called drought-evergreen species). This strategy prevented extensive leaf desiccation during the drought and successfully averted large nutrient losses caused by leaf desiccation. These four drought-deciduous species were also able to resorb N, P, and K from drought-senesced leaves, whereas drought-evergreen species did not resorb any nutrients from leaves lost to desiccation during the drought. For Oxydendrum arboreum, the species most severely affected by the drought, our results indicate that trees lost 50% more N and P due to desiccation than would have been lost from fall senescence alone. For all drought-deciduous species, resorption of N and P in fall-senesced leaves was highly proficient, whereas resorption was incomplete for drought-evergreen species. The lower seasonal nutrient losses of drought-deciduous species may give them a competitive advantage over drought-evergreen species in the years following the drought, thereby impacting species composition in temperate deciduous forests in the future.  相似文献   
946.
Ten anthocyanin components have been detected in roots of purple sweet potato (Ipomoea batatas Lam.) by high‐performance liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry. All the anthocyanins were exclusively cyanidins or peonidin 3‐sophoroside‐5‐glucosides and their acylated derivatives. The total anthocyanin content in purple sweet potato powder obtained by solid‐phase extraction was 66 mg g?1. A strong capacity of purple sweet potato anthocyanins (PSPA) to scavenge reactive oxygen species (superoxide, hydroxyl radical) and the stable 1,1‐diphenyl‐2‐picrylhydrazyl organic free radical was found in vitro using the electron spin resonance technique. To determine the functional roles of anthocyanins in leaves in vivo, for the first time, supplemental anthocyanins were infiltrated into leaves of Arabidopsis thaliana double mutant of the ecotype Landsberg erecta (tt3tt4) deficient in anthocyanin biosynthesis. Chlorophyll fluorescence imaging showed that anthocyanins significantly ameliorated the inactivation of photosystems II during prolonged high‐light (1300 µmol m?2 s?1) exposure. Comet assay of DNA revealed an obvious role of supplemental PSPA in alleviating DNA damage by high light in leaves. Our results suggest that anthocyanins could function in vitro and in vivo to alleviate the direct or indirect oxidative damage of the photosynthetic apparatus and DNA in plants caused by high‐light stress.  相似文献   
947.
948.
Soil microbial properties play a key role in belowground ecosystem functioning, but are not well understood in forest ecosystems under nitrogen (N) enrichment. In this study, soil samples from 0–10 cm and 10–20 cm layers were collected from a Dahurian larch (Larix gmelinii Rupr.) plantation in Northeast China after six consecutive years of N addition to examine changes in soil pH, nutrient concentrations, and microbial biomass and activities. Nitrogen addition significantly decreased soil pH and total phosphorus, but had little effect on soil total organic carbon (TOC) and total N (TN) concentrations. The NO 3 ? -N concentrations in the two soil layers under N addition were significantly higher than that in the control, while NH 4 + -N concentrations were not different. After six years of N addition, potential net N mineralization and nitrification rates were dramatically increased. Nitrogen addition decreased microbial biomass C (MBC) and N (MBN), and MBC/TOC and MBN/TN in the 0–10 cm soil layer, but MBC/MBN was increased by 67% in the 0–10 cm soil layer. Soil basal respiration, microbial metabolic quotient (qCO2), and β-glucosidase, urease, acid phosphomonoesterase and nitrate reductase activities in the two soil layers showed little change after six years of N addition. However, soil protease and dehydrogenase activities in the 0–10 cm layer were 41% and 54% lower in the N addition treatment than in the control, respectively. Collectively, our results suggest that in the mid-term N addition leads to a decline in soil quality in larch plantations, and that different soil enzymes show differentiated responses to N addition.  相似文献   
949.
The present study was to determine the effects of the heme oxygenase-1 (HO-1) modified mesenchymal stem cells (MSCs) transplantation into acute MI hearts on normalizing the ratio of MMPs/TIMPs and remodeling in infarcted myocardium. HO-1 was transfected into cultured MSCs using an adenoviral vector. 1 × 106 Ad-HO-1-transfected MSCs (HO-1-MSCs) or Ad-Null-transfected MSCs (Null-MSCs) or PBS was respectively injected into rat hearts 1 h intramyocardially after myocardial infarction. The cardiac performance was significantly improved and left ventricular dilatation was significantly attenuated in HO-1-MSCs transplanted hearts. Moreover, a significant increase in microvessel density was observed in HO-1-MSCs transplanted hearts. TIMP2,3 expression in HO-1-MSCs transplanted hearts was significantly increased, and MMP2,9 expression in HO-1-MSCs transplanted hearts was significantly lower than Null-MSCs transplanted and PBS-treated hearts. TIMP1 expression did not vary significantly. Null-MSCs transplantation did not decrease the expression of MMP2,9 significantly compared with PBS-treated hearts. The ratio of TIMP2 to MMP2, and TIMP3 to MMP9 in cell-grafted hearts was increased significantly. HO-1-MSCs transplantation normalize the ratio of MMPs/TIMPs, contributing to the reversion of myocardial extracellular remodeling.  相似文献   
950.
Low temperature at the booting stage is a serious abiotic stress in rice, and cold tolerance is a complex trait controlled by many quantitative trait loci (QTL). A QTL for cold tolerance at the booting stage in cold-tolerant near-isogenic rice line ZL1929-4 was analyzed. A total of 647 simple sequence repeat (SSR) markers distributed across 12 chromosomes were used to survey for polymorphisms between ZL1929-4 and the cold-sensitive japonica cultivar Towada, and nine were polymorphic. Single marker analysis revealed that markers on chromosome 7 were associated with cold tolerance. By interval mapping using an F2 population from ZL1929-4 × Towada, a QTL for cold tolerance was detected on the long arm of chromosome 7. The QTL explained 9 and 21% of the phenotypic variances in the F2 and F3 generations, respectively. Recombinant plants were screened for two flanking markers, RM182 and RM1132, in an F2 population with 2,810 plants. Two-step substitution mapping suggested that the QTL was located in a 92-kb interval between markers RI02905 and RM21862. This interval was present in BAC clone AP003804. We designated the QTL as qCTB7 (quantitative trait locus for cold tolerance at the booting stage on chromosome 7), and identified 12 putative candidate genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号