首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21881篇
  免费   1766篇
  国内免费   1993篇
  25640篇
  2024年   59篇
  2023年   317篇
  2022年   787篇
  2021年   1238篇
  2020年   782篇
  2019年   995篇
  2018年   955篇
  2017年   731篇
  2016年   998篇
  2015年   1364篇
  2014年   1689篇
  2013年   1861篇
  2012年   2032篇
  2011年   1808篇
  2010年   1140篇
  2009年   1066篇
  2008年   1186篇
  2007年   1005篇
  2006年   799篇
  2005年   752篇
  2004年   630篇
  2003年   563篇
  2002年   431篇
  2001年   352篇
  2000年   302篇
  1999年   306篇
  1998年   246篇
  1997年   181篇
  1996年   148篇
  1995年   134篇
  1994年   126篇
  1993年   100篇
  1992年   120篇
  1991年   113篇
  1990年   60篇
  1989年   58篇
  1988年   46篇
  1987年   34篇
  1986年   26篇
  1985年   35篇
  1984年   27篇
  1983年   17篇
  1982年   9篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1973年   1篇
  1967年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
A continuing theme of our laboraory, has been the understanding of human DNA polymerases at the structural level. We have purified DNA polymerases delta, epsilon and alpha from human placenta. Monoclonal antibodies to these polymerases were isolated and used as tools to study their immunochemical relationships. These studies have shown that while DNA polymerases delta, epsilon and alpha are discrete protiens, they must share common structural features by virtue of the ability of several of our monoclonal antibodies to exhibit cross-reactivity. A second approach we have taken is the molecular cloning of human DNA polymerase delta and epsilon. We have cloned the DNA polymerase delta cDNA, and this has allowed us to compare its primary structure to those of human polymerase alpha and other members of this polymerase family. Multiple sequence alignments have revealed that human DNA polymerase delta is also closely related to the herpes virus family of DNA polymerases. In situ hybridization has shown that the human DNA polymerase delta gene is localized to chromosome 19 q13.3–q13.4. In order to further determine the functional regions of the DNA polymerase δ structure we are currently expressing human pol δ inE. coli and baculovirus systems. Other work in our laboratory is directed toward examining the expression of DNA polymerase δ during the cell cycle.  相似文献   
42.
Glycerol has commonly been employed as a cryoprotectant in cryopreservation of human spermatozoa. However, the addition of glycerol into the sperm before freezing and the removal of glycerol from the sperm after freezing and thawing result in anisotonic environments to the cells, which can cause cell injury. To define optimal procedures for the addition/removal of glycerol and to minimize the cell injury, one needs to know the kinetics of glycerol permeation across the sperm plasma membrane at different temperatures. For this, one has to determine the permeability coefficient of glycerol (Pg) and its activation energy (Ea). Values of Pg at different temperatures and at different glycerol concentrations were determined by measuring the time required for 50% spermolysis in hyperosmotic glycerol solutions which were hypotonic with respect to electrolytes. Value of the Ea was determined assuming an Arrhenius type temperature dependence of Pg. A dual fluorescent staining technique (propidium iodide and 6-carboxyfluoroscein diacetate) and flow cytometry were used to measure the spermolysis. The values of Pg in 0.5, 1.0, 1.5, and 2.0 M glycerol at 22 degrees C are 1.62, 1.88, 1.68, and 1.54 x 10(-3) cm/min, respectively. The values of Pg in 1 M glycerol at 0, 8, 22, and 30 degrees C are 0.33, 0.54, 1.88, and 2.60 x 10(-3) cm/min, respectively. The value of Ea is 11.76 kcal/mol.  相似文献   
43.
Two and three-dimensional solution nuclear magnetic resonance studies of the 11K apoprotein from natural antitumor agent neocarzinostatin (NCS) were extended to elucidation of the high-resolution structure by the use of restrained molecular dynamics computations. The refined structures attained convergency upon three steps of iterative calculations, in which more distance restraints were extracted from experimental data, and the existing distance bounds were optimized on the basis of computed structures. The solution structures of apo-NCS contain seven antiparallel beta-strands, which form two closely located beta-sheets and a short beta-segment. This protein lacks any alpha-helical component. The alignment of the seven beta-strands gives rise to a beta-barrel with an elongated diameter in one direction. The global structure of apo-NCS resembles that of the Ig-fold domain found in immunoglobulins and other structurally related beta-proteins. Residues responsible for side-chain packing and the possible salt-bridge formation important for protein folding were identified. Neocarzinostatin and the analogous proteins are known to exert their biological activity through the interaction of DNA with a chromophoric molecule, which is non-covalently bound to the apo-proteins. This molecular chromophore-binding site in apo-NCS is made of a cavity consisting of residues from the four-beta-stranded sheet and the short beta-segment. Although the solution structures of apo-NCS are similar to that of the analogous apoauromomycin in the crystalline state, difference in the shape of the binding cavities between the two was found. This study provides a structural basis for characterization of the specific recognition and molecular mechanism of the antitumor NCS chromophore binding to its host protein.  相似文献   
44.
45.
A cytoplasmic chaperonin that catalyzes beta-actin folding.   总被引:27,自引:0,他引:27  
Y Gao  J O Thomas  R L Chow  G H Lee  N J Cowan 《Cell》1992,69(6):1043-1050
We have isolated a cytoplasmic chaperonin based on its ability to catalyze the folding of denatured beta-actin. The cytoplasmic chaperonin is organized as a multisubunit toroid and requires Mg2+ and ATP for activity. The folding reaction proceeds via the rapid ATP-independent formation of a binary complex, followed by a slower ATP-dependent release of the native product. Electron microscopic observations reveal a striking structural change that occurs upon addition of Mg2+ and ATP. The eukaryotic cytoplasm thus contains a chaperonin that is functionally analagous to its prokaryotic, mitochondrial, and chloroplastic counterparts.  相似文献   
46.
F H Gao  T Abee    W N Konings 《Applied microbiology》1991,57(8):2164-2170
The interaction of the peptide antibiotic nisin with liposomes has been studied. The effect of this interaction was analyzed on the membrane potential (inside negative) and the pH gradient (inside alkaline) in liposomes made from Escherichia coli phosphatidylethanolamine and egg phosphatidylcholine (9:1, wt/wt). The membrane potential and pH gradient were generated by artificial ion gradients or by the oxidation of ascorbate, N,N,N',N'-tetramethyl-p-phenylenediamine, and cytochrome c by the beef heart cytochrome c oxidase incorporated in the liposomal membranes. Nisin dissipated the membrane potential and the pH gradient in both types of liposomes and inhibited oxygen consumption by cytochrome c oxidase in proteoliposomes. The dissipation of the proton motive force in proteoliposomes was only to a minor extent due to a decrease of the oxidase activity by nisin. The results in these model systems show that a membrane potential and/or a pH gradient across the membrane enhances the activity of nisin. Nisin incorporates into the membrane and makes the membrane permeable for ions. As a result, both the membrane potential and pH gradient are dissipated. The activity of nisin was found to be influenced by the phospholipid composition of the liposomal membrane.  相似文献   
47.
The molecular and crystal structure of steffimycin have been determined by single crystal X-ray diffraction to 0.9 angstrom resolution. The triclinic crystals are in the space group P1, with the unit cell dimensions of a = 8.606(3) angstrom, b = 22.168(7) angstrom, c = 8.448(2) angstrom, alpha = 97.56(3) degrees, beta = 95.97(2) degrees, gamma = 87.94(3) degrees, Z = 2. The structure was solved by direct methods and refined by the full-matrix least-squares method to a final R value of 0.065 with 3405 (Inet greater than 2.0 sigma (Inet] observed reflections using the NRCVAX software package. The crystal lattice includes 2 independent steffimycin, 3 water and one 2-methyl-2,4-pentanediol molecules. The conformation of steffimycin is grossly similar to other anthracycline antibiotics including daunorubicin. The crystal packing interactions of steffimycin suggest a preferred stacking of the aglycone chromophore of the antibiotic which resembles the intercalative interactions seen in the daunorubicin-d(CGTACG) (Wang et al., Biochemistry 26, 1152 (1987] and nogalamycin-d(CGT(pS)ACG) (Liaw et al., Biochemistry 28, 9913 (1989] complexes. The atomic coordinates data from these complexes were used to model the intercalative binding of steffimycin to DNA. The models were then stereochemically idealized by the constraint refinement program NUCLSQ. Subsequently XPLOR software package was used for energy minimization of these models in vacuo. The model building studies suggest that steffimycin has a higher CpG base sequence specificity over the TpA step, similar to that of daunorubicin and nogalamycin.  相似文献   
48.
Y G Gao  Y C Liaw  H Robinson  A H Wang 《Biochemistry》1990,29(45):10307-10316
The three-dimensional molecular structures of the complexes between a novel antitumor drug nogalamycin and its derivative U-58872 with a modified DNA hexamer d[m5CGT(pS)Am5CG] have been determined at 1.7- and 1.8-A resolution, respectively, by X-ray diffraction analyses. Both structures (in space group P6(1)) have been refined with constrained refinement procedure to final R factors of 0.208 (3386 reflections) and 0.196 (2143 reflections). In both complexes, two nogalamycins bind to the DNA hexamer double helix in a 2:1 ratio with the elongated aglycon chromophore intercalated between the CpG steps at both ends of the helix. The aglycon chromophore spans across the GC Watson-Crick base pairs with its nogalose lying in the minor groove and the aminoglucose lying in the major groove of the distorted B-DNA double helix. Most of the sugars remain in the C2'-endo pucker family, except three deoxycytidine residues (terminal C1, C7, and internal C5). All nucleotides are in the anti conformation. Specific hydrogen bonds are found in the complex between the drug and guanine-cytosine bases in both grooves of the helix. One hydroxyl group of the aminoglucose donates a hydrogen bond to the N7 of guanine, while the other receives a hydrogen bond from the N4 amino group of cytosine. The orientation of these two hydrogen bonds suggests that nogalamycin prefers a GC base pair with its aglycon chromophore intercalating at the 5'-side of a guanine (between NpG), or at the 3'-side of a cytosine (between CpN) with the sugars pointing toward the GC base pair. The binding of nogalamycin to DNA requires that the base pairs in DNA open up transiently to allow the bulky sugars to go through, suggesting that nogalamycin prefers GC sequences embedded in a stretch of AT sequences.  相似文献   
49.
球虫病给养禽业带来巨大经济损失,人们对绿色健康食品的迫切需求使球虫病的防控面临新的挑战.伴随世界"禁抗"进程的不断推进,家禽养殖业亟需一种安全有效的新型抗球虫方法.益生菌可竞争性排斥病原菌定殖以防止球虫病继发感染,可刺激宿主抗菌肽、黏蛋白和紧密连接蛋白的分泌以抵御球虫入侵,还可激活免疫反应以增强机体抗球虫感染的能力.本...  相似文献   
50.
Cyclic guanosine monophosphate (cGMP) signalling plays a fundamental role in many cell types, including platelets. cGMP has been implicated in platelet formation, but mechanistic detail about its spatio-temporal regulation in megakaryocytes (MKs) is lacking. Optogenetics is a technique which allows spatio-temporal manipulation of molecular events in living cells or organisms. We took advantage of this method and expressed a photo-activated guanylyl cyclase, Blastocladiella emersonii Cyclase opsin (BeCyclop), after viral-mediated gene transfer in bone marrow (BM)-derived MKs to precisely light-modulate cGMP levels. BeCyclop-MKs showed a significantly increased cGMP concentration after illumination, which was strongly dependent on phosphodiesterase (PDE) 5 activity. This finding was corroborated by real-time imaging of cGMP signals which revealed that pharmacological PDE5 inhibition also potentiated nitric oxide-triggered cGMP generation in BM MKs. In summary, we established for the first-time optogenetics in primary MKs and show that PDE5 is the predominant PDE regulating cGMP levels in MKs. These findings also demonstrate that optogenetics allows for the precise manipulation of MK biology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号