首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   356篇
  免费   13篇
  国内免费   1篇
  2023年   2篇
  2022年   6篇
  2021年   8篇
  2020年   8篇
  2019年   11篇
  2018年   14篇
  2017年   12篇
  2016年   18篇
  2015年   21篇
  2014年   27篇
  2013年   26篇
  2012年   39篇
  2011年   25篇
  2010年   15篇
  2009年   12篇
  2008年   17篇
  2007年   19篇
  2006年   21篇
  2005年   15篇
  2004年   15篇
  2003年   16篇
  2002年   9篇
  2000年   2篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1986年   2篇
  1983年   1篇
  1979年   1篇
  1967年   1篇
排序方式: 共有370条查询结果,搜索用时 15 毫秒
221.
Vegetative Barriers (VB) have the potential to mitigate air pollutants emitted from area sources,including concentrated Animal Feeding Operations (AFOs).However,the mechanism has not been fully investigated,thereby limiting the application of vegetation systems in practice.An experimental method with repeatable and controllable conditions was developed to measure the change of Particulate Matter (PM) concentrations at upwind and downwind of VB in the wind tunnel and observe accumulated PM on leaves with Scanning Electron Microscope (SEM),thus evaluating the ability of VB in mitigating PM emitted from AFOs.Branch-scale vegetation,clove (syzygium aromaticum) was selected because its leaves are one of the major factors affecting PM dispersion.The results show that the branch-scale barriers,as porous medium have the ability to interfere with airflow and reduce PM,which could be influenced by wind speed,particle size fraction and surface area density of clove.Moreover,clove elements could adjust to the wind and the micro structure of clove (such as the hierarchical structures of leaves)affected on the PM deposition.These results indicate that the methods developed in this study may be used to evaluate the potential of vegetation in mitigating PM from stationary sources,and some characteristics of vegetation can be further studied as bionic prototype for exploring engineering application of reducing particulates.  相似文献   
222.
223.
Cheliped loss through autotomy is a common reflexive response in decapod crustaceans. Cheliped loss has direct and indirect effects on feeding behavior which can affect population dynamics and the role of species in the community. In this study, we assessed the impact of autotomy (0, 1, or 2 cheliped loss) on feeding behavior in the crab Pachygrapsus transversus, an omnivorous and abundant species that inhabits subtropical intertidal rocky shores along the South Atlantic Ocean. Autotomy altered crab feeding patterns and foraging behavior; however, the time spent foraging on animal prey or algae was not affected. These results indicate a plasticity of feeding behavior in P. transversus, allowing them to maintain feeding when injured.  相似文献   
224.
This study analyzed the involvement of nitric oxide (NO) in the root lignification of soybean seedlings. To this end, changes in root cell viability; phenylalanine ammonia-lyase (PAL) and soluble and cell wall bound peroxidase (POD) activities and lignin and hydrogen peroxide (H2O2) contents of soybean roots treated with the NO-donor sodium nitroprusside (SNP) and its relationships with root growth were evaluated. Seedlings were cultivated in a nutrient solution supplemented with 5 to 1,000 μM SNP for 24 h. At an extremely low concentration (5 μM), SNP induced root growth and increased lignification and activities of related enzymes (PAL and cell wall-bound POD). At a high concentration (1,000 μM), SNP reduced root growth and lignification (PAL activity and H2O2 and lignin contents) and caused a loss of cell viability. Application of potassium ferrocyanide (an analog of SNP that cannot release NO) and PTIO (2-phenyl-4,4,5,5,-tetramethylimidazoleline-1-oxyl-3-oxide, a scavenger of NO) revealed that the inhibitory/stimulatory effects on root lignification may be due to NO itself. These results indicate that NO, depending on its concentration, may act as a stress factor, due to its toxic action, or as a signal molecule, inducing soybean root growth and lignification.  相似文献   
225.
Angiotensin I-converting enzyme (ACE), a common element of renin–angiotensin system (RAS) and kallikrein–kinin system (KKS), is involved in myelopoiesis modulation, mainly by cleaving the tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP). Based on this finding and in our results showing B1 and B2 kinin receptors expression in murine bone marrow (BM) cells, we evaluated the ACE influence on myelopoiesis of kinin B1 receptor knockout mice (B1KO) using long-term bone marrow cultures (LTBMCs). Captopril and AcSDKP were used as controls. Enhanced ACE activity, expressed by non-hematopoietic cells (Ter-199? and CD45?), was observed in B1KO LTBMCs when compared to wild-type (WT) cells. ACE hyperfunction in B1KO cells was maintained when LTBMCs from B1KO mice were treated with captopril (1.0 μM) or AcSDKP (1.0 nM). Although no alterations were observed in ACE mRNA and protein levels under these culture conditions, 3.0 nM of AcSDKP increased ACE mRNA levels in WT LTBMCs. No alteration in the number of GM-CFC was seen in B1KO mice compared to WT animals, even when the former were treated with AcSDKP (10 μg/kg) or captopril (100 mg/kg) for 4 consecutive days. Hematological data also revealed no differences between WT and B1KO mice under basal conditions. When the animals received 4 doses of lipopolysaccharide (LPS), a decreased number of blood cells was detected in B1KO mice in relation to WT. We also found a decreased percentage of Gr1+/Mac-1+, Ter119+, B220+, CD3+, and Lin?Sca1+c-Kit+ (LSK) cells in the BM of B1KO mice compared to WT animals. Low AcSDKP levels were observed in BM cultures from B1KO in comparison to WT cultures. We conclude that ACE hyperfunction in B1KO mice resulted in faster hydrolysis of AcSDKP peptide, which in turn decreased in BM tissues allowing HSC to enter the S stage of the cell cycle.  相似文献   
226.
Kinins are potent vasoactive peptides generated in blood and tissues by the kallikrein serine proteases. Two distinct kinin receptors have been described, one constitutive (subtype B2) and one inducible (subtype B1), and many physiological functions have been attributed to these receptors, including glucose homeostasis and control of vascular permeability. In this study we show that mice lacking the kinin B1 receptor (B1-/- mice) have lower fasting plasma glucose concentrations but exhibit higher glycemia after feeding when compared to wild-type mice. B1-/- mice also present pancreas abnormalities, characterized by fewer pancreatic islets and lower insulin content, which leads to hypoinsulinemia and reduced insulin release after a glucose load. Nevertheless, an insulin tolerance test indicated higher sensitivity in B1-/- mice. In line with this phenotype, pancreatic vascular permeability was shown to be reduced in B1 receptor-ablated mice. The B1 agonist desArg9bradykinin injected intravenously can induce the release of insulin into serum, and this effect was not observed in the B1-/- mice or in isolated islets. Our data demonstrate the importance of the kinin B1 receptor in the control of pancreatic vascular homeostasis and insulin release, highlighting a new role for this receptor in the pathogenesis of diabetes and related diseases.  相似文献   
227.
The synthesis and differential antiproliferative activity of monastrol (1a), oxo-monastrol (1b) and eight oxygenated derivatives 3a,b-6a,b on seven human cancer cell lines are described. For all evaluated cell lines, monastrol (1a) was shown to be more active than its oxo-analogue, except for HT-29 cell line, suggesting the importance of the sulfur atom for the antiproliferative activity. Monastrol (1a) and the thio-derivatives 3a, 4a and 6a displayed relevant antiproliferative properties with 3,4-methylenedioxy derivative 6a being approximately more than 30 times more potent than monastrol (1a) against colon cancer (HT-29) cell line.  相似文献   
228.
During the summer of 2002, sampling was carried out in the Lima estuary in order to compare the pattern of the macrobenthic community’s distribution in relation to physical and chemical variables. A total of 54 macrobenthic taxa were identified. Abundance, biomass and specific diversity varied among the twenty stations. Abundance ranged from 212 to 9856 ind./m2, with an average of 1581 ind./m2. Abra alba presented the highest density corresponding to 39.1% of the total specimens gathered, followed by Hediste diversicolor with 31.5%. Biomass ranged from 0.12 to 264.62 g AFDW/m2, with an average of 17.58 g AFDW/m2. Cerastoderma edule and A. alba were the species with a clear predominance in the total biomass, contributing 75.3 and 13.8%, respectively. The multivariate techniques used revealed a macrobenthic community with five distinct groups, particularly related to the sedimentological characteristics and salinity. These results demonstrated significant differences in macrobenthic assemblage’s composition along an estuarine gradient. For the first time the presence of the nonindigenous invasive species Corbicula fluminea was described in this estuary.  相似文献   
229.
Dengue fever is one of the most widespread tropical diseases in the world. The disease is caused by a virus member of the Flaviviridae family, a group of enveloped positive sense single-stranded RNA viruses. Dengue virus infection is mediated by virus glycoprotein E, which binds to the cell surface. After uptake by endocytosis, this protein induces the fusion between viral envelope and endosomal membrane at the acidic environment of the endosomal compartment. In this work, we evaluated by steady-state and time-resolved fluorescence spectroscopy the interaction between the peptide believed to be the dengue virus fusion peptide and large unilamellar vesicles, studying the extent of partition, fusion capacity and depth of insertion in membranes. The roles of the bilayer composition (neutral and anionic phospholipids), ionic strength and pH of the medium were also studied. Our results indicate that dengue virus fusion peptide has a high affinity to vesicles composed of anionic lipids and that the interaction is mainly electrostatic. Both partition coefficient and fusion index are enhanced by negatively charged phospholipids. The location determined by differential fluorescence quenching using lipophilic probes demonstrated that the peptide is in an intermediate depth in the hemilayers, in-between the bilayer core and its surface. Ultimately, these data provide novel insights on the interaction between dengue virus fusion peptide and its target membranes, namely, the role of oligomerization and specific types of membranes.  相似文献   
230.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号