首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10942篇
  免费   1062篇
  国内免费   11篇
  12015篇
  2021年   137篇
  2020年   53篇
  2019年   101篇
  2018年   97篇
  2017年   94篇
  2016年   160篇
  2015年   332篇
  2014年   334篇
  2013年   455篇
  2012年   658篇
  2011年   627篇
  2010年   449篇
  2009年   384篇
  2008年   585篇
  2007年   618篇
  2006年   566篇
  2005年   619篇
  2004年   646篇
  2003年   617篇
  2002年   565篇
  2001年   129篇
  2000年   104篇
  1999年   146篇
  1998年   187篇
  1997年   112篇
  1996年   118篇
  1995年   118篇
  1994年   121篇
  1993年   105篇
  1992年   126篇
  1991年   101篇
  1990年   103篇
  1989年   100篇
  1988年   104篇
  1987年   92篇
  1986年   92篇
  1985年   107篇
  1984年   137篇
  1983年   113篇
  1982年   141篇
  1981年   143篇
  1980年   119篇
  1979年   83篇
  1978年   95篇
  1977年   95篇
  1976年   94篇
  1975年   91篇
  1974年   83篇
  1973年   102篇
  1972年   58篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Gross and net primary production together with chlorophyll-a biomass were investigated with respect to depth and diurnal changes in three categories of inland waters (reservoirs, temporary ponds, brackish water lagoons) in Sri Lanka. Ten field sites, in both the dry and wet zones of the island, were investigated. Bimodal productivity profiles were recorded in two of the three reservoirs studied. The diel pattern of net photosynthetic rate varied between sites although peak photosynthetic efficiency occurred at solar noon. Surface photoinhibition was characteristic of the reservoirs and brackish water lagoons but not of the temporary ponds. Mean gross primary production was 3.02 g C m–2 d–1 but was higher in the temporary ponds than in the reservoirs. The gross primary production in the brackish water Koggala Lagoon at 0.08 g C m–2 d–1 is a record low for tropical lagoons and was 2.5 times less than the two other lagoons investigated. Variability in net primary production between sites was similar to the variation in gross production with a relatively low mean value for tropical inland waters of 0.495 C m–2 d–1. Mean maximum photosynthetic rate was 0.30 mg C m–3 h–1 but was lower in the reservoirs than in the temporary ponds and lagoons.  相似文献   
52.
53.
Resonance Raman, optical absorption, and circular dichroism spectroscopic techniques have been used to examine the effect of the addition of inositol hexaphosphate (IHP) to a series of carp and human methemoglobin derivatives. Markers of spin equilibrium in the high-frequency region (1450-1650 cm-1) of the resonance Raman spectrum yield high/low-spin ratios consistent with direct magnetic susceptibility measurements. Changes in the low-frequency region (100-600 cm-1) of the resonance Raman spectrum appear to correlate with the quaternary structure transition. Changes in the ultraviolet absorption spectra and the circular dichroism spectra also appear to be related to the quaternary structure change. By using the resonance Raman spin markers, we find that those derivatives of carp methemoglobin which are in spin equilibrium have a larger ratio of high-spin to low-spin populations than the corresponding derivatives of human methemoglobin. Upon the addition of IHP to the methemoglobins the spin equilibrium is shifted toward a larger high-spin population. This change in equilibrium is larger for the carp protein than for the human protein. We obtain an IHP-induced change in the free energy difference between the high-spin and low-spin states of 300 cal/mol for those human methemoglobins in which a quaternary structure change occurs and 600 cal/mol for carp methemoglobins. Our data are consistent with a quaternary structure change induced by IHP in all the carp methemoglobins studied (F-, H2O, SCN-, NO2-, N3-, and CN-) and in the F-, H2O, and SCN- derivatives of the human protein but not in the NO2-, N3-, and CN- derivatives. The Fe-CN stretching mode has been identified by isotopic substitution and found to be unchanged in frequency in carp CN- metHb when the quaternary structure is changed. On the basis of our results we conclude that the protein forces at the heme due to the addition of IHP do not significantly affect the position of the iron atom with respect to the heme plane. Rather, the changes in spin equilibrium may be caused by protein-induced changes in the orientation of the proximal histidine or tertiary structure changes in the heme pocket which affect the porphyrin macrocycle. Either of these changes, or a combination thereof, leads to changes in the iron d orbital energies and concomitant changes in the spin equilibrium.  相似文献   
54.
A nonintrusive auxonometric system, based on the DARWIN image processor (Telewski et al. 1983 Plant Physiol 72: 177-181), is described and demonstrated in the analysis of gravitropism and thigmomorphogenesis in corn seedlings (Zea mays). Using this system, growth and bending of regularly shaped plants or organs can be quickly and accurately measured without, in any way, interfering with the plant. Furthermore, the growth and bending curves are automatically plotted. Thigmomorphogenesis in the aerial part of corn seedlings involves growth promotion at a low force load and growth retardation at higher force loads. The time courses of the two kinds of response are somewhat different, with retardation occurring immeditely after mechanical perturbation and growth promotion taking somewhat longer to begin. Gravitropic experiments show that when dark-grown corn seedlings are placed on their side in the light, the resulting curvature is due to two consecutive morphological mechanisms. In the first instance, lasting for about 15 minutes, the elongation of the bottom edge of the plant accelerates, while the elongation of the top edge remains constant. After that, for the next 1.75 hours, the elongation of the top edge decelerates and stops while that of the bottom edge remains constant at the increased rate for most of the period. The measurements taken from both experiments at relatively high resolution (0.08-0.1 millimeter) show that the growth curves are not smooth but show many small irregularities which may or may not involve micronutations.  相似文献   
55.
Dicyclohexane derivatives, which inhibit the binding of testosterone and dihydrotestosterone (DHT) to the androgen-binding protein (ABP) of rat epididymis without interfering with their binding to the androgen receptor, show a similar selectivity in their effects on androgen metabolism. Their ability to inhibit the aromatization of testosterone has been reported previously. This paper demonstrates that they are potent inhibitors of 3 alpha(beta)-hydroxysteroid:NAD(P)+ oxidoreductase activity (3-HSD) in the particulate fraction from rat prostate gland; the values of Ki for their inhibition of this enzyme are similar to that of the Km for DHT as substrate. The dicyclohexane derivatives are markedly less effective against the cytosolic NADPH-dependent 3-HSD, and they do not appear to inhibit testosterone 5 alpha-reductase activity. These characteristics are likely to complicate the proposed use of the dicyclohexane derivatives as probes for the role of ABP in vivo. However, they may be of interest in the study of structure-activity relationships in androgen-metabolizing enzymes, particularly in the examination of the different forms of 3-HSD.  相似文献   
56.
A simple and rapid radioimmunoassay was developed for the quantitative determination of ochratoxin A in barley. [14C]ochratoxin A, with a specific activity of 130 Ci/mol, was used as the tracer. Toxin levels below 100 ng/ml required a cleanup step. Three methods (the Association of Official Analytical Chemists cleanup method, the solvent partition method, and the Extrelut 3 column cleanup method) were compared.  相似文献   
57.
Abstract 3 New spectrophotometric enzyme assays were developed for the study of microbial lignin-degrading enzymes. The conversion of 2-methoxy-3-phenylbenzoic acid to 2-hydroxy-3-phenylbenzoic acid led to the discovery of an extracellular, aromatic methyl ether demethylase produced by the white-rot fungus Phanerochaete chrysosporium . The conversion of methyl 2-hydroxy-3-phenylbenzoate to 2-hydroxy-3-phenylbenzoic acid allowed the identification of an extracellular, aromatic methyl ester esterase produced by this fungus. The Phanerochaete sp. also excreted an enzyme complex that oxidized 4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one, probably to aliphatic products. All 3 novel enzyme activities were produced together with, and probably comprise a part of, the Phanerochaete ligninolytic enzyme complex. Unlike previously known ligninases, these enzymes did not oxidize 3,4-dimethoxybenzyl alcohol. All 3 were H2O2-dependent and were activated by Mn2+ ions.  相似文献   
58.
59.
Conclusion As the interactions between marine invertebrates and their bacterial commensals and symbionts are better understood, the application of biotechnology will enhance both environmental and economic benefit. In the immediate future, marine bacteria, either selected or genetically engineered, will play a significant role in enhancing the development of selected invertebrates in aquaculture and in the field. Luck may also favor discovery of mechanisms to suppress the development of biofouling species, perhaps by making it possible to coat submerged surfaces with bacterial films designed to repell larvae and/or interfere with larval morphogenesis. In any case, the future is appealing.  相似文献   
60.
Temperature dependence and seasonal variations in rates of microbial degradation of the lignin and polysaccharide components of specifically radiolabeled lignocelluloses were determined in sediment and water samples from a Georgia salt marsh and the nearby Okefenokee Swamp. Although temperature regimes in the two ecosystems were similar, rates of mineralization ofSpartina alterniflora lignocellulose in salt marsh sediments increased eightfold between winter and summer, whereas rates of mineralization of lignocellulose from an analogous freshwater macrophyte,Carex walteriana, in Okefenokee sediments increased only twofold between winter and summer. Temperature was the major factor influencing seasonal variations in rates of lignocellulose degradation in both environments. At any given temperature, no substantial differences in lignocellulolytic potential were observed with sediment samples collected at each season. In both ecosystems, the bulk of the lignocellulosic detritus was not degraded at the time of its peak deposition during the fall and winter. Instead, the periods of maximal decomposition occurred during the following spring and summer. These results suggest that periods of maximal nutrient regeneration from the mineralization of lignocellulosic detritus coincide with periods of highest primary production, and that, depending on hydrologic conditions, significant horizontal transport of essentially intact lignocellulosic material is possible due to the lag period between deposition and microbial degradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号