首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7511篇
  免费   671篇
  国内免费   3篇
  8185篇
  2023年   35篇
  2022年   32篇
  2021年   65篇
  2020年   56篇
  2019年   63篇
  2018年   162篇
  2017年   126篇
  2016年   194篇
  2015年   375篇
  2014年   388篇
  2013年   489篇
  2012年   602篇
  2011年   590篇
  2010年   373篇
  2009年   293篇
  2008年   459篇
  2007年   455篇
  2006年   454篇
  2005年   410篇
  2004年   362篇
  2003年   354篇
  2002年   320篇
  2001年   110篇
  2000年   104篇
  1999年   82篇
  1998年   57篇
  1997年   40篇
  1996年   42篇
  1995年   41篇
  1994年   27篇
  1993年   24篇
  1992年   47篇
  1991年   47篇
  1990年   61篇
  1989年   59篇
  1988年   61篇
  1987年   52篇
  1986年   48篇
  1985年   40篇
  1984年   40篇
  1983年   28篇
  1982年   24篇
  1981年   23篇
  1979年   31篇
  1978年   28篇
  1977年   21篇
  1975年   20篇
  1974年   32篇
  1973年   23篇
  1853年   21篇
排序方式: 共有8185条查询结果,搜索用时 62 毫秒
31.
MSMEG_0220 from Mycobacterium smegmatis, the ortholog of the Rv0183 gene from M. tuberculosis, recently identified and characterized as encoding a monoacylglycerol lipase, was cloned and expressed in Escherichia coli. The recombinant protein (rMSMEG_0220), which exhibits 68% amino acid sequence identity with Rv0183, showed the same substrate specificity and similar patterns of pH-dependent activity and stability as the M. tuberculosis enzyme. rMSMEG_0220 was found to hydrolyze long-chain monoacylglycerol with a specific activity of 143 ± 6 U mg−1. Like Rv0183 in M. tuberculosis, MSMEG_0220 was found to be located in the cell wall. To assess the in vivo role of the homologous proteins, an MSMEG_0220 disrupted mutant of M. smegmatis (MsΔ0220) was produced. An intriguing change in the colony morphology and in the cell interaction, which were partly restored in the complemented mutant containing either an active (ComMsΔ0220) or an inactive (ComMsΔ0220S111A) enzyme, was observed. Growth studies performed in media supplemented with monoolein showed that the ability of both MsΔ0220 and ComMsΔ0220S111A to grow in the presence of this lipid was impaired. Moreover, studies of the antimicrobial susceptibility of the MsΔ0220 strain showed that this mutant is more sensitive to rifampin and more resistant to isoniazid than the wild-type strain, pointing to a critical structural role of this enzyme in mycobacterial physiology, in addition to its function in the hydrolysis of exogenous lipids.Tuberculosis, which is caused by Mycobacterium tuberculosis, is a major public health issue worldwide. Because of the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains and the high incidence of HIV and tuberculosis coinfection (16), it is becoming increasingly difficult to combat the spread of this disease, and the global health burden of tuberculosis is extremely heavy. The reasons for the persistence of the tubercle bacillus include not only its ability to enter into a state of dormancy in its host for decades, evading the immune system by forming structures called granulomas (17), but also its unique and complex cell wall composed of specific lipids (8). These characteristics are thought to be good focus points for drug development. In granulomas, during the nonreplicative stage, the bacteria have been found to accumulate lipids in the form of intracellular lipid inclusion bodies (LIBs) (13). These lipids are composed mainly of triacylglycerols (TAG) (9, 13) and may originate from the lipolysis of host lipids and/or fatty acid uptake. In fact, M. tuberculosis in the granuloma center can even accumulate lipids originating from the degradation of immune cells (20). In addition, it has been reported that M. tuberculosis internalized by foamy macrophages accumulated LIBs when it joined cell lipid droplets composed of neutral lipids (32). Lipid storage may provide the bacillus with energy via the β-oxidation pathway followed by the glyoxylate cycle, during the chronic phase and the reactivation step (3, 17). These lipids may also supply precursors for the synthesis of bacterial cell membrane lipids, which play a key role in the pathogenicity of M. tuberculosis (4, 23). To investigate the molecular basis of the virulence and pathogenicity of M. tuberculosis, it was therefore proposed to study the lipid metabolism and cell wall remodeling processes in this bacterium.The enzymes involved in the lipid degradation processes induced by this bacterium have attracted considerable attention during the last few years. Based on the complete M. tuberculosis H37Rv genome sequence (6), several open reading frames (ORFs) encoding proteins potentially involved in the lipid metabolism of this strain have been identified, among which are the two lipases from M. tuberculosis that have been purified and characterized so far. Deb et al. identified an enzyme, Rv3097c (LipY), belonging to the hormone-sensitive lipase family, which is able to hydrolyze long-chain TAG (10). A study of LIB mobilization in a lipY-deficient mutant has shown that LipY was involved in TAG hydrolysis under nutriment-deprived conditions (10). LipY may therefore be involved in the degradation of TAG stored during the dormant stage and the subsequent reactivation of the pathogen. In addition, electron microscopy immunolabeling studies of LipY clearly showed that the enzyme had a cell surface localization, thus in direct contact with the host immune system (28). The last identified lipase to date is a monoacylglycerol lipase annotated Rv0183 (7). Like LipY, Rv0183 is located in the cell wall, but its exact physiological function has not yet been elucidated. One hypothesis could be that, like some mammalian cells (e.g., adipocytes), M. tuberculosis expresses several lipolytic enzymes sequentially involved in the lipolysis of TAG (37). The Rv0183 enzyme is conserved in M. bovis (Mb0189) and M. leprae (ML2603), as well as in M. smegmatis (MSMEG_0220), a nonpathogenic mycobacterium which provides a useful model organism and a surrogate host for molecular analysis of M. tuberculosis (19). In order to decipher the cellular role of Rv0183 in M. tuberculosis H37Rv and its contribution to the lipid metabolism of this bacterium, biochemical studies were performed on the homologue MSMEG_0220. For this purpose, the MSMEG_0220 gene from M. smegmatis, encoding a protein showing 68% amino acid sequence identity with Rv0183, was cloned, and the recombinant MSMEG_0220 enzyme (rMSMEG_0220) was produced in Escherichia coli, purified, and biochemically characterized. An M. smegmatis mutant with an MSMEG_0220 disrupted gene was produced to investigate the physiological role of MSMEG_0220.  相似文献   
32.
Range shifts of many species are now documented as a response to global warming. But whether these observed changes are occurring fast enough remains uncertain and hardly quantifiable. Here, we developed a simple framework to measure change in community composition in response to climate warming. This framework is based on a community temperature index (CTI) that directly reflects, for a given species assemblage, the balance between low- and high-temperature dwelling species. Using data from the French breeding bird survey, we first found a strong increase in CTI over the last two decades revealing that birds are rapidly tracking climate warming. This increase corresponds to a 91 km northward shift in bird community composition, which is much higher than previous estimates based on changes in species range edges. During the same period, temperature increase corresponds to a 273 km northward shift in temperature. Change in community composition was thus insufficient to keep up with temperature increase: birds are lagging approximately 182 km behind climate warming. Our method is applicable to any taxa with large-scale survey data, using either abundance or occurrence data. This approach can be further used to test whether different delays are found across groups or in different land-use contexts.  相似文献   
33.
The biosphere is changing rapidly due to human endeavour. Because ecological communities underlie networks of interacting species, changes that directly affect some species can have indirect effects on others. Accurate tools to predict these direct and indirect effects are therefore required to guide conservation strategies. However, most extinction-risk studies only consider the direct effects of global change—such as predicting which species will breach their thermal limits under different warming scenarios—with predictions of trophic cascades and co-extinction risks remaining mostly speculative. To predict the potential indirect effects of primary extinctions, data describing community interactions and network modelling can estimate how extinctions cascade through communities. While theoretical studies have demonstrated the usefulness of models in predicting how communities react to threats like climate change, few have applied such methods to real-world communities. This gap partly reflects challenges in constructing trophic network models of real-world food webs, highlighting the need to develop approaches for quantifying co-extinction risk more accurately. We propose a framework for constructing ecological network models representing real-world food webs in terrestrial ecosystems and subjecting these models to co-extinction scenarios triggered by probable future environmental perturbations. Adopting our framework will improve estimates of how environmental perturbations affect whole ecological communities. Identifying species at risk of co-extinction (or those that might trigger co-extinctions) will also guide conservation interventions aiming to reduce the probability of co-extinction cascades and additional species losses.  相似文献   
34.
Trials testing the RTS,S candidate malaria vaccine and radiation-attenuated sporozoites (RAS) have shown that protective immunity against malaria can be induced and that an effective vaccine is not out of reach. However, longer-term protection and higher protection rates are required to eradicate malaria from the endemic regions. It implies that there is still a need to explore new vaccine strategies. Lentiviral vectors are very potent at inducing strong immunological memory. However their integrative status challenges their safety profile. Eliminating the integration step obviates the risk of insertional oncogenesis. Providing they confer sterile immunity, nonintegrative lentiviral vectors (NILV) hold promise as mass pediatric vaccine by meeting high safety standards. In this study, we have assessed the protective efficacy of NILV against malaria in a robust pre-clinical model. Mice were immunized with NILV encoding Plasmodium yoelii Circumsporozoite Protein (Py CSP) and challenged with sporozoites one month later. In two independent protective efficacy studies, 50% (37.5–62.5) of the animals were fully protected (p = 0.0072 and p = 0.0008 respectively when compared to naive mice). The remaining mice with detectable parasitized red blood cells exhibited a prolonged patency and reduced parasitemia. Moreover, protection was long-lasting with 42.8% sterile protection six months after the last immunization (p = 0.0042). Post-challenge CD8+ T cells to CSP, in contrast to anti-CSP antibodies, were associated with protection (r = −0.6615 and p = 0.0004 between the frequency of IFN-g secreting specific T cells in spleen and parasitemia). However, while NILV and RAS immunizations elicited comparable immunity to CSP, only RAS conferred 100% of sterile protection. Given that a better protection can be anticipated from a multi-antigen vaccine and an optimized vector design, NILV appear as a promising malaria vaccine.  相似文献   
35.
36.
Eukaryotic peptidoglycan recognition proteins (PGRPs) are related to bacterial amidases. In Drosophila, PGRPs bind peptidoglycan and function as central sensors and regulators of the innate immune response. PGRP-LC/PGRP-LE constitute the receptor complex in the immune deficiency (IMD) pathway, which is an innate immune cascade triggered upon Gram-negative bacterial infection. Here, we present the functional analysis of the nonamidase, membrane-associated PGRP-LF. We show that PGRP-LF acts as a specific negative regulator of the IMD pathway. Reduction of PGRP-LF levels, in the absence of infection, is sufficient to trigger IMD pathway activation. Furthermore, normal development is impaired in the absence of functional PGRP-LF, a phenotype mediated by the JNK pathway. Thus, PGRP-LF prevents constitutive activation of both the JNK and the IMD pathways. We propose a model in which PGRP-LF keeps the Drosophila IMD pathway silent by sequestering circulating peptidoglycan.  相似文献   
37.
Plant Ecology - Changes in community diversity and dynamics after fires in Mediterranean ecosystems are rarely investigated more than a few years after the fire even though pronounced changes can...  相似文献   
38.
We report herein the molecular engineering of an efficient two-photon absorbing (TPA) chromophore based on a donor-donor bis-stilbenyl entity to allow conjugation with biologically relevant molecules. The dye has been functionalized using an isothiocyanate moiety to conjugate it with the amine functions of poly(ethylenimine) (PEI), which is a cationic polymer commonly used for nonviral gene delivery. Upon conjugation, the basic architecture and photophysical properties of the active TPA chromophore remain unchanged. At the usual N/P ratio (ratio of the PEI positive charges to the DNA negative charges) of 10 used for transfection, the transfection efficiency and cytotoxicity of the labeled PEI/DNA complexes were found to be comparable to those of the unlabeled PEI/DNA complexes. Moreover, when used in combination with unlabeled PEI (at a ratio of 1 labeled PEI to 3 unlabeled PEI), the labeled PEI does not affect the size of the complexes with DNA. The labeled PEI was successfully used in two-photon fluorescence correlation spectroscopy measurements, showing that at N/P = 10 most PEI molecules are free and the diffusion coefficient of the complexes is consistent with the 360 nm size measured by quasielastic light scattering. Finally, two-photon images of the labeled PEI/DNA complexes confirmed that the complexes enter into the cytoplasm of HeLa cells by endocytosis and hardly escape from the endosomes. As a consequence, the functionalized TPA chromophore appears to be an adequate tool to label the numerous polyamines used in nonviral gene delivery and characterize their complexes with DNA in two-photon applications.  相似文献   
39.
Abstract The most common effect of the endosymbiont Wolbachia is cytoplasmic incompatibility (CI), a form of postzygotic reproductive isolation that occurs in crosses where the male is infected by at least one Wolbachia strain that the female lacks. We revisited two puzzling features of Wolbachia biology: how Wolbachia can invade a new species and spread among populations, and how the association, once established in a host species, can evolve, with emphasis on the possible process of infection loss. These questions are particularly relevant in haplodiploid species, where males develop from unfertilized eggs, and females from fertilized eggs. When CI occurs in such species, fertilized eggs either die (female mortality type: FM), or develop into males (male development type: MD), raising one more question: how transition among CI types is possible. We reached the following conclusions: (1) the FM type is a better invader and should be retained preferentially after a new host is captured; (2) given the assumptions of the models, FM and MD types are selected on neither the bacterial side nor the host side; (3) selective pressures acting on both partners are more or less congruent in the FM type, but divergent in the MD type; (4) host and symbiont evolution can drive infection to extinction for all CI types, but the MD type is more susceptible to the phenomenon; and (5) under realistic conditions, transition from MD to FM type is possible. Finally, all these results suggest that the FM type should be more frequent than the MD type, which is consistent with the results obtained so far in haplodiploids.  相似文献   
40.
Within 40 years of experimental studies in prebiotic chemistry, most of the building blocks of the living systems have been synthesized in plausible conditions of the primitive Earth. The starting ingredients correspond to two complementary classes: volatile organics, and their non volatile oligomers. They may have been formed in the atmosphere on the primitive Earth and/or imported by extra-terrestrial sources. Organic chemistry is involved in meteorites, comets, in the giant planets and several of their satellites. Again this chemistry presents the two complementary aspects. In particular, with a dense reduced atmosphere rich in organic compounds in gas and aerosol phases, Titan appears as a natural laboratory for studying prebiotic chemistry at a planetary scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号