首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   2篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   3篇
  2011年   8篇
  2010年   1篇
  2009年   3篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   9篇
  2004年   7篇
  2003年   7篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1978年   3篇
  1977年   3篇
  1976年   6篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有105条查询结果,搜索用时 93 毫秒
21.
22.
Factor B is the central protease of the complement system of immune defense. Here, we present the crystal structure of human factor B at 2.3-A resolution, which reveals how the five-domain proenzyme is kept securely inactive. The canonical activation helix of the Von Willebrand factor A (VWA) domain is displaced by a helix from the preceding domain linker. The two helices conformationally link the scissile-activation peptide and the metal ion-dependent adhesion site required for binding of the ligand C3b. The data suggest that C3b binding displaces the three N-terminal control domains and reshuffles the two central helices. Reshuffling of the helices releases the scissile bond for final proteolytic activation and generates a new interface between the VWA domain and the serine protease domain. This allosteric mechanism is crucial for tight regulation of the complement-amplification step in the immune response.  相似文献   
23.
Increasing evidence has implicated the membrane protein CD36 (or fatty acid translocase, FAT) to be involved in high affinity fatty acid uptake. CD36 is expressed in tissues active in fatty acid metabolism, like adipose tissue and skeletal and cardiac muscle, but also in intestine. CD36 is localized in the intestine mainly in the jejunal villi, where it is confined to enterocyte apical membrane.The aim was to determine the role of CD36 in intestinal lipid absorption. Lipid absorption was determined by administering 3H-labeled triolein and 14C-labeled palmitic acid as an olive oil bolus by intragastric gavage and determine appearance of 3H and 14C label in plasma, after blocking lipolysis by i.v. injections of Triton WR 1339. Surprisingly, no differences in plasma appearance of 3H-label or 14C-label were observed in CD36–/– mice compared to wild type controls. These results suggest that CD36 does not play a role in intestinal lipid absorption after an acute lipid load.  相似文献   
24.
25.
The purpose of the present in vivo study was to determine the role of nitric oxide (NO) in the regulation of glucose metabolism in response to endotoxin by blocking NO synthesis with N(G)-monomethyl-L-arginine (L-NMMA). In five dogs, the appearance and disappearance rates of glucose (by infusion of [6,6-(2)H(2)]glucose), plasma glucose concentration, and plasma hormone concentrations were measured on five different occasions: saline infusion, endotoxin alone (E coli, 1.0 microg/kg i.v.), and endotoxin administration plus three different doses of primed, continuous infusion of L-NMMA. Endotoxin increased rate of appearance of glucose from 13.7 +/- 1.6 to 23.6 +/- 3.3 micromol x kg(-1) x min(-1) (P < 0.05), rate of disappearance of glucose from 13.9 +/- 1.1 to 24.8 +/- 3.1 micromol x kg(-1) x min(-1) (P < 0.001), plasma lactate from 0.5 +/- 0.1 to 1.7 +/- 0.1 mmol/l (P < 0.01), and counterregulatory hormone concentrations. L-NMMA did not affect the rise in rate of appearance and disappearance of glucose, plasma lactate, or the counterregulatory hormone response to endoxin. Plasma glucose levels were not affected by endotoxin with or without L-NMMA. In conclusion, in vivo inhibition of NO synthesis by high doses of L-NMMA does not affect glucose metabolism in response to endotoxin, indicating that NO is not a major mediator of glucose metabolism during endotoxemia in dogs.  相似文献   
26.
In healthy subjects, basal endogenous glucose production is partly regulated by paracrine intrahepatic factors. It is currently unknown whether paracrine intrahepatic factors also influence the increased basal endogenous glucose production in patients with type 2 diabetes mellitus. Administration of indomethacin to patients with type 2 diabetes mellitus stimulates endogenous glucose production and inhibits insulin secretion. Our aim was to evaluate whether this stimulatory effect on glucose production is solely attributable to inhibition of insulin secretion. In order to do this, we administered indomethacin to 5 patients with type 2 diabetes during continuous infusion of somatostatin to block endogenous insulin and glucagon secretion and infusion of basal concentrations of insulin and glucagon in a placebo-controlled study. Endogenous glucose production was measured 3 hours after the start of the somatostatin, insulin and glucagon infusion, for 4 hours after administration of placebo/indomethacin, by primed, continuous infusion of [6,6-(2)H(2)] glucose. At the time of administration of placebo or indomethacin, there were no significant differences in plasma glucose concentrations and endogenous glucose production rates between the two experiments (16.4 +/- 2.09 mmol/l vs. 16.6 +/- 1.34 mmol/l and 17.7 +/- 1.05 micromol/kg/min and 17.0 +/- 1.06 micromol/kg/min), control vs. indomethacin). Plasma glucose concentration did not change significantly in the four hours after indomethacin or placebo administration. Endogenous glucose production in both experiments was similar after both placebo and indomethacin. Mean plasma C-peptide concentrations were all below the detection limit of the assay, reflecting adequate suppression of endogenous insulin secretion by somatostatin. There were no differences in plasma concentrations of insulin (76 +/- 5 vs. 74 +/- 4 pmol/l) and glucagon (69 +/- 8 vs. 71 +/- 6 ng/l) between the studies with levels remaining unchanged in both experiments. Plasma concentrations of cortisol, epinephrine, and norepinephrine were similar in the two studies and did not change significantly. We conclude that indomethacin stimulates endogenous glucose production in patients with type 2 diabetes mellitus by inhibition of insulin secretion.  相似文献   
27.
28.
J.C. Romijn  J. Amesz 《BBA》1976,423(2):164-173
Light-induced absorbance changes were measured at low temperatures in reaction center preparations from Rhodopseudomonas sphaeroides. Absorbance difference spectra measured at 100 °K show that ubiquinone is photoreduced at this temperature, both by continuous light and by a short actinic flash. The reduction occurred with relatively high efficiency. These results give support to the idea that ubiquinone is involved in the primary photochemical reaction in Rhodopseudomonas sphaeroides. Reduction of ubiquinone was accompanied by a shift of the infrared absorption band of bacteriopheophytin.The rate of decay of the primary photoproducts (P+870 and ubisemiquinone) appeared to be approximately independent of temperature below 180 °K and above 270 °K; in the region between 180 and 270 °K it increased with decreasing temperature. The rate of decay was not affected by o-phenanthroline. Secondary reactions were inhibited by lowering the temperature.The light-induced absorbance changes were inhibited by chaotropic agents, like thiocyanate and perchlorate. It was concluded that these agents lower the efficiency of the primary photoconversion. The kinetics indicated that the degree of inhibition was not the same for all reaction centers. The absorption spectrum of the photoconverted reaction centers appeared to be somewhat modified by thiocyanate.  相似文献   
29.
It has been suggested that (abdominally) obese individuals are hypersensitive to growth hormone (GH) action. Because GH affects glucose metabolism, this may impact glucose homeostasis in abdominal obesity. Therefore, we studied the effect of GH on glucose metabolism in abdominally obese (OB) and normal-weight (NW) premenopausal women. A 1-h intravenous infusion of GH or placebo was randomly administered to six NW [body mass index (BMI) 21.1 +/- 1.9 kg/m(2)] and six OB (BMI 35.5 +/- 1.5 kg/m(2)) women in a crossover design. Insulin, glucagon, and GH secretion were suppressed by concomitant infusion of somatostatin. Glucose kinetics were measured using a 10-h infusion of [6,6-(2)H(2)]glucose. In both groups, similar physiological GH peaks were reached by infusion of GH. GH strongly stimulated endogenous glucose production (EGP) in both groups. The percent increase was significantly greater in OB than in NW women (29.8 +/- 11.3 vs. 13.3 +/- 7.4%, P = 0.014). Accordingly, GH responsiveness, defined as the maximum response of EGP per unit GH, was increased in OB vs. NW subjects (6.0 +/- 2.1 vs. 2.2 +/- 1.5 micromol.min(-1).mU(-1).l(-1), P = 0.006). These results suggest that the liver is hyperresponsive to GH action in abdominally obese women. The role of the somatotropic ensemble in the control of glucose homeostasis in abdominal obesity is discussed.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号