首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   10篇
  106篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2015年   4篇
  2014年   4篇
  2013年   1篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2007年   5篇
  2006年   4篇
  2005年   5篇
  2004年   7篇
  2003年   1篇
  2002年   4篇
  2001年   5篇
  2000年   3篇
  1999年   9篇
  1998年   10篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   4篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1977年   1篇
排序方式: 共有106条查询结果,搜索用时 15 毫秒
71.
High frequency hearing loss correlated with mutations in the GJB2 gene   总被引:18,自引:0,他引:18  
Genetic hearing impairment affects approximately 1/2000 live births. Mutations in one gene, GJB2, coding for connexin 26 cause 10%-20% of all genetic sensorineural hearing loss. Mutation analysis in the GJB2 gene and audiology were performed on 106 families presenting with at least one child with congenital hearing loss. The families were recruited from a hospital-based multidisciplinary clinic, which functions to investigate the aetiology of sensorineural hearing loss in children and which serves an ethnically diverse population. In 74 families (80 children), the aetiology was consistent with non-syndromic recessive hearing loss. Six different connexin 26 mutations, including one novel mutation, were identified. We show that GJB2 mutations cause a range of phenotypes from mild to profound hearing impairment and that loss of hearing in the high frequency range (4000-8000 Hz) is a characteristic feature in children with molecularly diagnosed connexin 26 hearing impairment. We also demonstrate that this type of audiology and high frequency hearing loss is found in a similar-sized group of deaf children in whom a mutation could only be found in one of the connexin 26 alleles, suggesting connexin 26 involvement in the aetiology of hearing loss in these cases. In our study of the M34T mutation, only compound heterozygotes exhibited hearing loss, suggesting autosomal recessive inheritance.  相似文献   
72.
73.
74.
Within the tribe Stenodermatini the systematics of the complex of species allied with the genus Artibeus has generated several alternative phylogenetic hypotheses. The most recent treatment recognized four genera (Artibeus, Dermanura, Enchisthenes, and Koopmania) and suggested that the most recent common ancestor of these four genera would include the common ancestor of all other currently recognized Stenodermatini genera except Sturnira. To test this hypothesis, we examined an EcoRI-defined nuclear satellite DNA repeat and 402 bp of DNA sequence variation from the mitochondrial cytochrome b gene. Phylogenetic conclusions based on Southern blot analyses, in situ hybridization, and mitochondrial DNA sequence data indicate that Enchisthenes is not closely related to Dermanura, Artibeus, or Koopmania and that Dermanura, Artibeus, and Koopmania shared a common ancestor after diverging from the remainder of the Stenodermatini. If our conclusions are correct, then justification for recognizing Dermanura and Koopmania as generically distinct from Artibeus must be based on the magnitude of difference that distinguishes each rather than on the conclusion that to place them as congeneric with Artibeus creates a paraphyletic taxon.   相似文献   
75.
76.
Polyclonal antibodies were elicited against seven of the 33 different proteins of the large subunit of the chloroplast ribosome from Chlamydomonas reinhardtii. Three of these proteins are synthesized in the chloroplast and four are made in the cytoplasm and imported. In western blots, six of the seven antisera are monospecific for their respective large subunit ribosomal proteins, and none of these antisera cross-reacted with any chloroplast small subunit proteins from C. reinhardtii. Antisera to the three chloroplast-synthesized ribosomal proteins cross-reacted with specific Escherichia coli large subunit proteins of comparable charge and molecular weight. Only one of the four antisera to the chloroplast ribosomal proteins synthesized in the cytoplasm cross-reacted with an E. coli large subunit protein. None of the antisera cross-reacted with any E. coli small subunit proteins. On the assumption of a procaryotic, endosymbiotic origin for the chloroplast, those chloroplast ribosomal proteins still synthesized within the organelle appear to have retained more antigenic sites in common with E. coli ribosomal proteins than have those which are now the products of cytoplasmic protein synthesis. Antisera to this cytoplasmically synthesized group of chloroplast ribosomal proteins did not recognize any antigenic sites among C. reinhardtii cytoplasmic ribosomal proteins, suggesting that the genes for the cytoplasmically synthesized chloroplast ribosomal proteins either are not derived from the cytoplasmic ribosomal protein genes or have evolved to a point where no antigenic similarities remain.   相似文献   
77.
78.
Anthers and ovules of Scabiosa columbaria L. were cultured in vitro to determine whether gametophytic cells would proliferate and/or a protocol for plant regeneration could be developed. Several factors were tested, including explant type, donor plant, cold pre-treatment, and medium composition. Callus induction frequency varied among treatments, indicated by significant effects of explant type, medium composition, and their interactions. Histological analysis revealed numerous sites of callus induction, however, gametophytic cells did not proliferate. Stepwise removal of growth regulators and simultaneous lowering of sucrose from the nutrient medium, resulted in initiation of embryogenesis or shoot organogenesis, and allowed plant regeneration. Under the conditions tested, regeneration capacity was donor related, because only material of one donor responded. Regenerants were diploid (except one mixoploid individual), but showed various types of flower heads. They were probably of sporophytic origin. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
79.
80.

Background  

Comparisons of functionally important changes at the molecular level in model systems have identified key adaptations driving isolation and speciation. In cichlids, for example, long wavelength-sensitive (LWS) opsins appear to play a role in mate choice and male color variation within and among species. To test the hypothesis that the evolution of elaborate coloration in male guppies (Poecilia reticulata) is also associated with opsin gene diversity, we sequenced long wavelength-sensitive (LWS) opsin genes in six species of the family Poeciliidae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号