首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   26篇
  335篇
  2023年   1篇
  2022年   6篇
  2021年   9篇
  2020年   8篇
  2019年   12篇
  2018年   13篇
  2017年   6篇
  2016年   16篇
  2015年   11篇
  2014年   18篇
  2013年   19篇
  2012年   20篇
  2011年   27篇
  2010年   14篇
  2009年   14篇
  2008年   13篇
  2007年   19篇
  2006年   14篇
  2005年   11篇
  2004年   13篇
  2003年   7篇
  2002年   6篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   9篇
  1991年   7篇
  1990年   4篇
  1989年   1篇
  1988年   4篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1981年   1篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1948年   1篇
排序方式: 共有335条查询结果,搜索用时 9 毫秒
111.
Wide ranges of growth yields on sulfur (from 2.4 × 1010 to 8.1 × 1011 cells g−1) and maximum sulfur oxidation rates (from 0.068 to 1.30 mmol liter−1 h−1) of an Acidithiobacillus ferrooxidans strain (CCM 4253) were observed in 73 batch cultures. No significant correlation between the constants was observed. Changes of the Michaelis constant for sulfur (from 0.46 to 15.5 mM) in resting cells were also noted.  相似文献   
112.
The stimulation of myocardium repair is restricted due to the limited understanding of heart regeneration. Interestingly, endogenous opioid peptides such as dynorphins and enkephalins are suggested to support this process. However, the mechanism—whether through the stimulation of the regenerative capacity of cardiac stem cells or through effects on other cell types in the heart—is still not completely understood. Thus, a model of the spontaneous cardiomyogenic differentiation of mouse embryonic stem (mES) cells via the formation of embryoid bodies was used to describe changes in the expression and localization of opioid receptors within cells during the differentiation process and the potential of the selected opioid peptides, dynorphin A and B, and methionin-enkephalins and leucin-enkephalins, to modulate cardiomyogenic differentiation in vitro. The expressions of both κ- and δ-opioid receptors significantly increased during mES cell differentiation. Moreover, their primary colocalization with the nucleus was followed by their growing presence on the cytoplasmic membrane with increasing mES cell differentiation status. Interestingly, dynorphin B enhanced the downregulation gene expression of Oct4 characteristic of the pluripotent phenotype. Further, dynorphin B also increased cardiomyocyte-specific Nkx2.5 gene expression. However, neither dynorphin A nor methionin-enkephalins and leucin-enkephalins exhibited any significant effects on the course of mES cell differentiation. In conclusion, despite the increased expression of opioid receptors and some enhancement of mES cell differentiation by dynorphin B, the overall data do not support the notion that opioid peptides have a significant potential to promote the spontaneous cardiomyogenesis of mES cells in vitro.  相似文献   
113.
Mycopathologia - This report describes a case of invasive Exophiala dermatitidis infection after double lung transplantation in a 76-year-old man. After thoracotomy, the patient’s wound...  相似文献   
114.
Genes encoding glycosyl hydrolase family 11 (GH11) xylanases and xylanases have been identified from Pseudobutyrivibrio xylanivorans. In contrast, little is known about the diversity and distribution of the GH10 xylanase in strains of P. xylanivorans. Xylanase and associated activities of P. xylanivorans have been characterized in detail in the type strain, Mz5. The aim of the present study was to identify GH10 xylanase genes in strains 2 and Mz5 of P. xylanivorans. In addition, we evaluated degradation and utilization of xylan by P. xylanivorans 2 isolated from rumen of Creole goats. After a 12-h culture, P. xylanivorans 2 was able to utilize up to 53 % of the total pentose content present in birchwood xylan (BWX) and to utilize up to 62 % of a ethanol-acetic acid-soluble fraction prepared from BWX. This is the first report describing the presence of GH10 xylanase-encoding genes in P. xylanivorans. Strain 2 and Mz5 contained xylanases which were related to GH10 xylanase of Butyrivibrio sp. Identifying xylanase-encoding genes and activity of these enzymes are a step toward understanding possible functional role of P. xylanivorans in the rumen ecosystem and contribute to providing an improved choice of enzymes for improving fiber digestion in ruminant animals, agricultural biomass utilization for biofuel production, and other industries.  相似文献   
115.

Background

Plasma glucose levels are tightly regulated within a narrow physiologic range. Insulin-mediated glucose uptake by tissues must be balanced by the appearance of glucose from nutritional sources, glycogen stores, or gluconeogenesis. In this regard, a common pathway regulating both glucose clearance and appearance has not been described. The metabolism of glucose to produce ATP is generally considered to be the primary stimulus for insulin release from beta-cells. Similarly, gluconeogenesis from phosphoenolpyruvate (PEP) is believed to be the primarily pathway via the cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK-C). These models cannot adequately explain the regulation of insulin secretion or gluconeogenesis.

Scope of review

A metabolic sensing pathway involving mitochondrial GTP (mtGTP) and PEP synthesis by the mitochondrial isoform of PEPCK (PEPCK-M) is associated with glucose-stimulated insulin secretion from pancreatic beta-cells. Here we examine whether there is evidence for a similar mtGTP-dependent pathway involved in gluconeogenesis. In both islets and the liver, mtGTP is produced at the substrate level by the enzyme succinyl CoA synthetase (SCS-GTP) with a rate proportional to the TCA cycle. In the beta-cell PEPCK-M then hydrolyzes mtGTP in the production of PEP that, unlike mtGTP, can escape the mitochondria to generate a signal for insulin release. Similarly, PEPCK-M and mtGTP might also provide a significant source of PEP in gluconeogenic tissues for the production of glucose. This review will focus on the possibility that PEPCK-M, as a sensor for TCA cycle flux, is a key mechanism to regulate both insulin secretion and gluconeogenesis suggesting conservation of this biochemical mechanism in regulating multiple aspects of glucose homeostasis. Moreover, we propose that this mechanism may be important for regulating insulin secretion and gluconeogenesis compared to canonical nutrient sensing pathways.

Major conclusions

PEPCK-M, initially believed to be absent in islets, carries a substantial metabolic flux in beta-cells. This flux is intimately involved with the coupling of glucose-stimulated insulin secretion. PEPCK-M activity may have been similarly underestimated in glucose producing tissues and could potentially be an unappreciated but important source of gluconeogenesis.

General significance

The generation of PEP via PEPCK-M may occur via a metabolic sensing pathway important for regulating both insulin secretion and gluconeogenesis. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   
116.
While the effect of habitat connectivity on local and regional diversity has been analysed in a number of studies, time-dependent dynamics in metacommunities have received comparatively little consideration. When local patches of a metacommunity are identical in environmental conditions but differ in initial community composition, dispersal among patches may result in homogenization of local communities. In a microcosm experiment with benthic ciliates, we tested the hypothesis that the effect of connectivity on diversity is time-dependent and only transitory, with the degree of connectivity affecting the time to homogenization but not the final outcome. Six microcosms were connected to a metacommunity with one of three levels of connectivity. The six patches differed in initial community composition but were identical in environmental conditions. We found a time-dependent and transitory effect of connectivity on local and regional richness and on local Shannon diversity, while Bray-Curtis dissimilarity and regional Shannon diversity were persistently affected by connectivity. Local richness increased and regional richness decreased with connectivity during the initial phase of the experiment but soon converged to similar values in all three connectivity treatments. Local Shannon diversity was unimodally related to time, with maximum diversity reached sooner with high than with medium or low connectivity. Eventually, however, local diversity converged to similar values irrespective of connectivity. At the regional scale, Shannon diversity was persistently lower with high than with low connectivity. While initial differences in community composition vanished with medium and high connectivity, they were maintained with low connectivity resulting in persistently high beta and regional diversity. The effect of connectivity on ciliate community composition translated down to the algal resource, as stronger dominance of the superior competitor with high and medium connectivity resulted in stronger depletion of the resource.  相似文献   
117.

Background

Mitochondria are both the cellular powerhouse and the major source of reactive oxygen species. Coenzyme Q10 plays a key role in mitochondrial energy production and is recognized as a powerful antioxidant. For these reasons it can be argued that higher mitochondrial ubiquinone levels may enhance the energy state and protect from oxidative stress. Despite the large number of clinical studies on the effect of CoQ10 supplementation, there are very few experimental data about the mitochondrial ubiquinone content and the cellular bioenergetic state after supplementation. Controversial clinical and in vitro results are mainly due to the high hydrophobicity of this compound, which reduces its bioavailability.

Principal Findings

We measured the cellular and mitochondrial ubiquinone content in two cell lines (T67 and H9c2) after supplementation with a hydrophilic CoQ10 formulation (Qter®) and native CoQ10. Our results show that the water soluble formulation is more efficient in increasing ubiquinone levels. We have evaluated the bioenergetics effect of ubiquinone treatment, demonstrating that intracellular CoQ10 content after Qter supplementation positively correlates with an improved mitochondrial functionality (increased oxygen consumption rate, transmembrane potential, ATP synthesis) and resistance to oxidative stress.

Conclusions

The improved cellular energy metabolism related to increased CoQ10 content represents a strong rationale for the clinical use of coenzyme Q10 and highlights the biological effects of Qter®, that make it the eligible CoQ10 formulation for the ubiquinone supplementation.  相似文献   
118.
The expression of Ruminococcus flavefaciens 007S cellulases in different incubation time points (growth stages) and their substrate inducibility were analyzed by comparing the zymogram expression profiles of cultures grown on insoluble cellulose (Avicel) with cellobiose-grown cultures. The molecular weights of the enzymes were compared to (putative) cellulases encoded in the R. flavefaciens FD-1 genome.  相似文献   
119.
The gene encoding the active site of the ammonia monooxygenase (amoA) has been exploited as molecular marker for studying ammonia-oxidizing bacteria (AOB) diversity in the environment. Primers amplifying functional genes are often degenerated and therefore produce multiple band patterns, when analysed with the Denaturing gradient gel electrophoresis (DGGE) approach. To improve the DGGE band patterns we have designed new primer sets which contain inosine residues and are specific for the amoA gene. Primers were evaluated analysing pure AOB cultures and two habitats (wastewater treatment plant, soda pools). We found that the application of inosine primers helped to reduce the apparent complexity of the DGGE band pattern. Comparison of sequences from environmental samples using either degenerated or inosine containing amoA primers retrieved both identical and additional sequences. Both primer sets seem to be limited in their ability to detect the presence of all AOB by DGGE analyses.  相似文献   
120.
Mitochondrial Complex I [NADH Coenzyme Q (CoQ) oxidoreductase] is the least understood of respiratory complexes. In this review we emphasize some novel findings on this enzyme that are of relevance to the pathogenesis of neurodegenerative diseases. Besides CoQ, also oxygen may be an electron acceptor from the enzyme, with generation of superoxide radical in the mitochondrial matrix. The site of superoxide generation is debated: we present evidence based on the rational use of several inhibitors that the one-electron donor to oxygen is an iron-sulphur cluster, presumably N2. On this assumption we present a novel mechanism of electron transfer to the acceptor, CoQ. Complex I is deeply involved in pathological changes, including neurodegeneration. Complex I changes are involved in common neurological diseases of the adult and old ages. Mitochondrial cytopathies due to mutations of either nuclear or mitochondrial DNA may represent a useful model of neurodegeneration. In this review we discuss Parkinson’s disease, where the pathogenic involvement of Complex I is better understood; the accumulated evidence on the mode of action of Complex I inhibitors and their effect on oxygen radical generation is discussed in terms of the aetiology and pathogenesis of the disease. Special issue article in honor of Dr. Anna Maria Giuffrida-Stella.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号