首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3275篇
  免费   250篇
  国内免费   1篇
  3526篇
  2023年   24篇
  2022年   35篇
  2021年   66篇
  2020年   41篇
  2019年   48篇
  2018年   73篇
  2017年   69篇
  2016年   106篇
  2015年   145篇
  2014年   196篇
  2013年   208篇
  2012年   257篇
  2011年   265篇
  2010年   155篇
  2009年   132篇
  2008年   200篇
  2007年   185篇
  2006年   190篇
  2005年   166篇
  2004年   124篇
  2003年   113篇
  2002年   123篇
  2001年   46篇
  2000年   43篇
  1999年   36篇
  1998年   23篇
  1997年   36篇
  1996年   22篇
  1995年   18篇
  1994年   17篇
  1993年   16篇
  1992年   34篇
  1991年   11篇
  1990年   22篇
  1989年   18篇
  1988年   16篇
  1987年   18篇
  1986年   13篇
  1985年   16篇
  1984年   16篇
  1983年   11篇
  1982年   10篇
  1981年   10篇
  1980年   14篇
  1979年   9篇
  1976年   7篇
  1972年   7篇
  1967年   7篇
  1966年   7篇
  1956年   9篇
排序方式: 共有3526条查询结果,搜索用时 15 毫秒
11.
Selective treatment of pig kidney fructose 1,6-bisphosphatase with potassium cyanate leads to the formation of an active carbamylated enzyme that has lost the cooperative interactions among AMP sites, but retains sensitivity to inhibition of catalytic activity by the regulator AMP. Incorporation data on [14C]KNCO indicate that the loss of enzyme cooperativity at the AMP sites is related to selective carbamylation of four lysine residues per mole of tetrameric enzyme. Exhaustive carbamylation suggests that a second lysine residue per subunit is essential for AMP inhibition.  相似文献   
12.
13.
Capsule Radiotracked male Corncrake often intruded on the territories of neighbouring males.

Aims To test that intruders' visits are goal-directed, not just a by-product of extended spatial activity during daylight hours.

Methods Using radiotelemetry, we sampled a total of 20 three-day home ranges from 11 tagged males. We recorded daily vocal activity and used a permutation test to see if the movements of tracked males were independent of the position of neighbouring males.

Results The majority of males who had a neighbouring male, up to approximately 600 m from their night calling site, undertook goal-directed visits to the neighbour's territory. Males undertook these visits every day, or every other day, when the neighbours were close. Males undertook visits approximately once every three days when they were more distant. The time spent in the neighbour's territory was longest where the distance between night calling sites was about 200 m. Males tended to be silent in neighbour's territory, apparently to prevent confrontation. Otherwise the distance of neighbouring males did not significantly affect daytime vocal activity. Visiting males tended to sing more often in their home territories.

Conclusions Daily movement of the majority of males was towards the neighbouring male's calling site. We suggest that the purpose of these visits was to seek females. These males may try to drive a female into their territory or gain extra-pair copulation.  相似文献   
14.
15.
Reversible protein phosphorylation is a key regulatory mechanism of mitotic progression. Importantly, protein kinases themselves are also regulated by phosphorylation-dephosphorylation processes; hence, phosphorylation dynamics of kinases hold a wealth of information about phosphorylation networks. Here, we investigated the site-specific phosphorylation dynamics of human kinases during mitosis using synchronization of HeLa suspension cells, kinase enrichment, and high resolution mass spectrometry. In biological triplicate analyses, we identified 206 protein kinases and more than 900 protein kinase phosphorylation sites, including 61 phosphorylation sites on activation segments, and quantified their relative abundances across three specific mitotic stages. Around 25% of the kinase phosphorylation site ratios were found to be changed by at least 50% during mitotic progression. Further network analysis of jointly regulated kinase groups suggested that Cyclin-dependent kinase- and mitogen-activated kinase-centered interaction networks are coordinately down- and up-regulated in late mitosis, respectively. Importantly, our data cover most of the already known mitotic kinases and, moreover, identify attractive candidates for future studies of phosphorylation-based mitotic signaling. Thus, the results of this study provide a valuable resource for cell biologists and provide insight into the system properties of the mitotic phosphokinome.Reversible phosphorylation is a ubiquitous posttranslational protein modification that is involved in the regulation of almost all biological processes (13). In human, 518 protein kinases have been identified in the genome that phosphorylate the majority of cellular proteins and increase the diversity of the proteome by severalfold (4). Addition of a phosphate group to a protein can alter its structural, catalytic, and functional properties; hence, kinases require tight regulation to avoid unspecific phosphorylation, which can be deleterious to cells (57). As a result, cells use a variety of mechanisms to ensure proper regulation of kinase activities (8). Importantly, most kinases are also in turn regulated through autophosphorylation and phosphorylation by other kinases, thus generating complex phosphorylation networks. In particular, phosphorylation on activation segments is a common mechanism to modulate kinase activities (911), but additional phosphorylation sites are also frequently required for fine tuning of kinase localizations and functions (12). Some kinases contain phosphopeptide binding domains that recognize prephosphorylated sites on other kinases, resulting in processive phosphorylation and/or targeting of kinases to distinct cellular locations (1316). Because such priming phosphorylation events depend on the activities of the priming kinases, these motifs act as conditional docking sites and restrict the interaction with docking kinases to a particular point in time and physiological state. In addition, phosphorylation sites may act through combinatorial mechanisms or through cross-talk with other posttranslational modifications (PTMs)1 (17, 18), thus further increasing the complexity of kinase regulatory networks.Regulation of kinases is of particular interest in mitosis as most of the mitotic events are regulated by reversible protein phosphorylation (19). During mitosis, error-free segregation of sister chromatids into the two daughter cells is essential to ensure genomic stability. Physically, this process is carried out by the mitotic spindle, a highly dynamic microtubule-based structure. After entry into mitosis, the major microtubule-organizing centers in animal cells, the centrosomes, start to increase microtubule nucleation and move to opposite poles of the cell. Throughout prometaphase, microtubules emanating from centrosomes are captured by kinetochores, protein complexes assembled on centromeric chromosomal DNA. This eventually leads to the alignment of all chromosomes in a metaphase plate. Because proper bipolar attachment of chromosomes to spindle microtubules is essential for the correct segregation of chromosomes, this critical step is monitored by a signaling pathway known as the spindle assembly checkpoint (SAC) (20). This checkpoint is silenced only after all chromosomes have attached to the spindle in a bioriented fashion, resulting in the synchronous segregation of sister chromatids during anaphase. Simultaneously, a so-called central spindle is formed between the separating chromatids, and the formation of a contractile ring initiates cytokinesis. Finally, in telophase, the chromosomes decondense and reassemble into nuclei, whereas remnants of the central spindle form the midbody, marking the site of abscission. Cyclin-dependent kinase 1 (Cdk1), an evolutionarily conserved master mitotic kinase, is activated prior to mitosis and initiates most of the mitotic events. Cdk1 works in close association with other essential mitotic kinases such as Plk1, Aurora A, and Aurora B for the regulation of mitotic progression (19, 2124). Plk1 and Aurora kinases dynamically localize to different subcellular locations to perform multiple functions during mitosis and are phosphorylated at several conserved sites. Although little is known about the precise roles of these phosphorylation sites, emerging data indicate that they are involved in regulating localization-specific functions (25, 26). Furthermore, the kinases Bub1, BubR1, and TTK (Mps1) and kinases of the Nek family play important roles in maintaining the fidelity and robustness of mitosis (19). Recently, a genome-wide RNA-mediated interference screen identified M phase phenotypes for many kinases that have not previously been implicated in cell cycle functions, indicating that additional kinases have important mitotic functions (27).Although protein phosphorylation plays a pivotal role in the regulation of cellular networks, many phosphorylation events remain undiscovered mainly because of technical limitations (28). The advent of mass spectrometry-based proteomics along with developments in phosphopeptide enrichment methods has enabled large scale global phosphoproteomics studies (29, 30). However, the number of phosphorylation sites identified on kinases is limited compared with other proteins because of their frequently low expression levels. To overcome this problem, small inhibitor-based kinase enrichment strategies were developed, resulting in the identification of more than 200 kinases from HeLa cell lysates (31, 32). This method was also used recently to compare the phosphokinomes during S phase and M phase of the cell cycle, resulting in the identification of several hundreds of M phase-specific kinase phosphorylation sites (31). In the present study, we address the dynamics of the phosphokinome during mitotic progression using large scale cell synchronization at three distinct mitotic stages, small inhibitor-based kinase enrichment, and stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative mass spectrometry. Thus, we determined the mitotic phosphorylation dynamics of more than 900 kinase phosphorylation sites and identified distinctly regulated kinase interaction networks. Our results provide a valuable resource for the dynamics of the kinome during mitotic progression and give insight into the system properties of kinase interaction networks.  相似文献   
16.
Primaquine (PQ) is the only commercially available drug that clears dormant liver stages of malaria and blocks transmission to mosquito vectors. Although an old drug, much remains to be known about the mechanism(s) of action. Herein we develop a fluorescent tagged PQ to discover cellular localization in the human malaria parasite, Plasmodium falciparum. Successful synthesis and characterization of a primaquine-coumarin fluorescent probe (PQCP) demonstrated potency equivalent to the parent drug and the probe was not cytotoxic to HepG2 carcinoma cells. Cellular localization was found primarily in the cytosol of the asexual erythrocytic and gametocyte stages of parasite development.  相似文献   
17.
We have isolated a membrane fraction enriched in a class of transport carriers that form at the trans Golgi network (TGN) and are destined for the cell surface in HeLa cells. Protein kinase D (PKD) is required for the biogenesis of these carriers that contain myosin II, Rab6a, Rab8a, and synaptotagmin II, as well as a number of secretory and plasma membrane‐specific cargoes. Our findings reveal a requirement for myosin II in the migration of these transport carriers but not in their biogenesis per se. Based on the cargo secreted by these carriers we have named them CARTS for CAR riers of the T GN to the cell S urface. Surprisingly, CARTS are distinct from the carriers that transport vesicular stomatitis virus (VSV)‐G protein and collagen I from the TGN to the cell surface. Altogether, the identification of CARTS provides a valuable means to understand TGN to cell surface traffic.  相似文献   
18.

Background & Aims

Current guidelines recommend immunosuppressive treatment (IT) in patients with primary sclerosing cholangitis (PSC) and elevated aminotransferase levels more than five times the upper limit of normal and elevated serum IgG-levels above twice the upper limit of normal. Since there is no evidence to support this recommendation, we aimed to assess the criteria that guided clinicians in clinical practice to initiate IT in patients with previously diagnosed PSC.

Methods

This is a retrospective analysis of 196 PSC patients from seven German hepatology centers, of whom 36 patients had received IT solely for their liver disease during the course of PSC. Analyses were carried out using methods for competing risks.

Results

A simplified autoimmune hepatitis (AIH) score >5 (HR of 36, p<0.0001) and a modified histological activity index (mHAI) greater than 3/18 points (HR 3.6, p = 0.0274) were associated with the initiation of IT during the course of PSC. Of note, PSC patients who subsequently received IT differed already at the time of PSC diagnosis from those patients, who did not receive IT during follow-up: they presented with increased levels of IgG (p = 0.004) and more frequently had clinical signs of cirrhosis (p = 0.0002).

Conclusions

This is the first study which investigates the parameters associated with IT in patients with PSC in clinical practice. A simplified AIH score >5 and a mHAI score >3, suggesting concomitant features of AIH, influenced the decision to introduce IT during the course of PSC. In German clinical practice, the cutoffs used to guide IT may be lower than recommended by current guidelines.  相似文献   
19.
The ability to recognize other individuals' mental states-their knowledge and beliefs, for example-is a fundamental part of human cognition and may be unique to our species. Tests of a "theory of mind" in animals have yielded conflicting results. Some nonhuman primates can read others' intentions and know what others see, but they may not understand that, in others, perception can lead to knowledge. Using an alarm-call-based field experiment, we show that chimpanzees were more likely to alarm call in response to a snake in the presence of unaware group members than in the presence of aware group members, suggesting that they recognize knowledge and ignorance in others. We monitored the behavior of 33 individuals to a model viper placed on their projected travel path. Alarm calls were significantly more common if the caller was with group members who had either not seen the snake or had not been present when alarm calls were emitted. Other factors, such as own arousal, perceived risk, or risk to receivers, did not significantly explain the likelihood of calling, although they did affect the call rates. Our results suggest that chimpanzees monitor the information available to other chimpanzees and control vocal production to selectively inform them.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号