首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1028篇
  免费   105篇
  1133篇
  2024年   1篇
  2023年   12篇
  2022年   18篇
  2021年   41篇
  2020年   33篇
  2019年   31篇
  2018年   38篇
  2017年   40篇
  2016年   45篇
  2015年   86篇
  2014年   83篇
  2013年   111篇
  2012年   114篇
  2011年   98篇
  2010年   54篇
  2009年   48篇
  2008年   57篇
  2007年   42篇
  2006年   37篇
  2005年   32篇
  2004年   33篇
  2003年   19篇
  2002年   13篇
  2001年   6篇
  2000年   2篇
  1999年   8篇
  1998年   3篇
  1997年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1972年   1篇
  1936年   1篇
排序方式: 共有1133条查询结果,搜索用时 15 毫秒
101.
102.
The characterization of the biomechanical properties of newly formed bone tissue around implants is important to understand the osseointegration process. The objective of this study is to investigate the evolution of the hardness and indentation modulus of newly formed bone tissue as a function of healing time. To do so, a nanoindentation device is employed following a multimodality approach using histological analysis. Coin-shaped implants were placed in vivo at a distance of 200 μm from the cortical bone surface, leading to an initially empty cavity of 200 μm * 4.4 mm. Three New Zealand White rabbits were sacrificed after 4, 7, and 13 weeks of healing time. The bone samples were embedded and analyzed using histological analyses, allowing to distinguish mature and newly formed bone tissue. The bone mechanical properties were then measured in mature and newly formed bone tissue. The results are within the range of hardness and apparent Young's modulus values reported in previous literature. One-way ANOVA test revealed a significant effect of healing time on the indentation modulus (p < 0.001, F = 111.24) and hardness (p < 0.02, F = 3.47) of bone tissue. A Tukey-Kramer analysis revealed that the biomechanical properties of newly formed bone tissue (4 weeks) were significantly different from those of mature bone tissue. The comparison with the results obtained in Mathieu et al. (2011, "Micro-Brillouin Scattering Measurements in Mature and Newly Formed Bone Tissue Surrounding an Implant," J. Biomech. Eng., 133, 021006). shows that bone mass density increases by approximately 13.5% between newly formed bone (7 weeks) and mature bone tissue.  相似文献   
103.
Hippocampal brain-derived neurotrophic factor (BDNF) protein is increased with exercise in rats. Monoamines seem to play a role in the regulation of BDNF, and monoamine neurotransmission is known to increase with exercise. The purpose of this study was to examine the influence of acute exercise on monoaminergic neurotransmission and BDNF protein concentrations. Hippocampal microdialysis was performed in rats that were subjected to 60 min of treadmill running at 20 m/min or rest. Two hours postexercise, the rats were killed, and the hippocampus was dissected. In experiments without microdialysis, hippocampus and serum samples were collected immediately after exercise. Exercise induced a twofold increase in hippocampal dopamine release. Noradrenaline and serotonin release were not affected. Hippocampal BDNF levels were not influenced, whether they were measured immediately or 2 h after the exercise protocol. Serum BDNF levels did not change either, but serum BDNF was negatively correlated to peripheral corticosterone concentrations, indicating a possible inhibitory reaction to the stress of running. Sixty minutes of exercise enhances dopamine release in the hippocampus of the rat in vivo. However, this increase is not associated with changes in BDNF protein levels immediately nor 2 h after the acute exercise bout. An increased corticosterone level might be the contributing factor for the absence of changes in BDNF.  相似文献   
104.
The role of the major histocompatibility complex (MHC) in mate choice in humans is controversial. Nowadays, the availability of genetic variation data at genomic scales allows for a careful assessment of this question. In 2008, Chaix et al. reported evidence for MHC-dependent mate choice among European American spouses from the HapMap 2 dataset. Recently, Derti et al. suggested that this observation was not robust. Furthermore, when Derti et al. applied similar analyses to the HapMap 3 European American samples, they did not see a significant effect. Although some of the points raised by Derti et al. are relevant, we disagree with the reported absence of evidence for MHC-dependent mate choice within the HapMap samples. More precisely, we show here that the MHC dissimilarity among HapMap 3 European American spouses is still extreme in comparison to the rest of the genome, even after multiple testing correction. This finding supports the hypothesis of MHC-dependent mate choice in some human populations.  相似文献   
105.
Anopheles darlingi Root is the major vector of human malaria in the Neotropics and has been considered to be the sole malaria vector in French Guiana. The presence of other potential vectors suggests that malaria may be transmitted by other species under certain conditions. From 2006-2011, all anopheline specimens collected from 11 localities were assayed to determine if the Plasmodium circumsporozoite protein was present. In addition to An. darlingi, we found Anopheles oswaldoi, Anopheles intermedius and Anopheles nuneztovari specimens that were infected with Plasmodium sp. Further investigations on the behaviour and ecology of An. oswaldoi, An. intermedius and An. nuneztovari are necessary to determine their role in malaria transmission in French Guiana.  相似文献   
106.
107.
Highlights? We describe a predictive computational model of dynamic chromosomes in the yeast nucleus ? The model quantitatively recapitulates experimental data on nuclear organization ? The model predicts nuclear reorganization in response to treatment by rapamycin ? Large-scale nuclear organization is dominated by unspecific effects of crowded polymers  相似文献   
108.
TM9 proteins form a family of conserved proteins with nine transmembrane domains essential for cellular adhesion in many biological systems, but their exact role in this process remains unknown. In this study, we found that genetic inactivation of the TM9 protein Phg1A dramatically decreases the surface levels of the SibA adhesion molecule in Dictyostelium amoebae. This is due to a decrease in sibA mRNA levels, in SibA protein stability, and in SibA targeting to the cell surface. A similar phenotype was observed in cells devoid of SadA, a protein that does not belong to the TM9 family but also exhibits nine transmembrane domains and is essential for cellular adhesion. A contact site A (csA)-SibA chimeric protein comprising only the transmembrane and cytosolic domains of SibA and the extracellular domain of the Dictyostelium surface protein csA also showed reduced stability and relocalization to endocytic compartments in phg1A knockout cells. These results indicate that TM9 proteins participate in cell adhesion by controlling the levels of adhesion proteins present at the cell surface.  相似文献   
109.
To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T9TKE12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from Kd = 25±6 nM to Kd = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (Kd = 0.25±0.06 nM). FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the νas(P-O) and νs(P-O) IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in νas(UO2)2+ vibration (from 923 cm−1 to 908 cm−1) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH.  相似文献   
110.
ABSTRACT: BACKGROUND: Chromatin organization has been increasingly studied in relation with its important influence on DNA-related metabolic processes such as replication or regulation of gene expression. Since its original design ten years ago, capture of chromosome conformation (3C) has become an essential tool to investigate the overall conformation of chromosomes. It relies on the capture of long-range trans and cis interactions of chromosomal segments whose relative proportions in the final bank reflect their frequencies of interactions, hence their average spatial proximity. The recent coupling of 3C with deep sequencing approaches now allows the generation of high resolution genome-wide chromosomal contact maps. Different protocols have been used to generate such maps in various organisms. This includes mammals, drosophila and yeast. The massive amount of raw data generated by the genomic 3C has to be carefully processed to alleviate the various biases and byproducts generated by the experiments. Our study aims at proposing a simple normalization procedure to take into account these unwanted but inevitable events. RESULTS: Careful analysis of the raw data generated previously for budding yeast Saccharomyces cerevisiae led to the identification of three main biases affecting the final datasets, including an original bias resulting from the circularization of DNA molecules exhibiting specific lengths in accordance with laws from polymer physics. We then developed a simple normalization procedure to process the data and allow the generation of a normalized, highly contrasted, chromosomal contact map for S. cerevisiae. The same method was then extended to the first human genome contact map. Using the normalized data, we revisited the preferential interactions originally described between subsets of discrete chromosomal features. Notably, the detection of preferential interactions between tRNA in yeast and CTCF, PolII binding sites in human can vary with the normalization procedure used. CONCLUSIONS: We quantitatively reanalyzed the genomic 3C data obtained for S. cerevisiae, identified some of the biases inherent to the technique and proposed a simple normalization procedure to analyze them. Such an approach can be easily generalized for genomic 3C experiments in other organisms. More experiments and analysis will be necessary to reach optimal resolution and accuracies of the maps generated through these approaches. Working with cell population presenting highest levels of homogeneity will prove useful in this regards.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号