首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1629篇
  免费   137篇
  国内免费   5篇
  2024年   2篇
  2023年   24篇
  2022年   46篇
  2021年   91篇
  2020年   49篇
  2019年   53篇
  2018年   56篇
  2017年   47篇
  2016年   67篇
  2015年   117篇
  2014年   120篇
  2013年   146篇
  2012年   168篇
  2011年   139篇
  2010年   79篇
  2009年   68篇
  2008年   76篇
  2007年   65篇
  2006年   63篇
  2005年   45篇
  2004年   55篇
  2003年   39篇
  2002年   26篇
  2001年   16篇
  2000年   9篇
  1999年   24篇
  1998年   6篇
  1997年   4篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   6篇
  1991年   7篇
  1990年   2篇
  1989年   8篇
  1988年   2篇
  1987年   6篇
  1986年   8篇
  1985年   2篇
  1984年   4篇
  1983年   5篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1936年   1篇
排序方式: 共有1771条查询结果,搜索用时 406 毫秒
971.

Objective

To explore the perspectives of a diverse group of stakeholders engaged in medicines decision making around what constitutes an “essential” medicine, and how the Essential Medicines List (EML) concept functions in a high income country context.

Methods

In-depth qualitative semi-structured interviews were conducted with 32 Australian stakeholders, recognised as decision makers, leaders or advisors in the area of medicines reimbursement or supply chain management. Participants were recruited from government, pharmaceutical industry, pharmaceutical wholesale/distribution companies, medicines non-profit organisations, academic health disciplines, hospitals, and consumer groups. Perspectives on the definition and application of the EML concept in a high income country context were thematically analysed using grounded theory approach.

Findings

Stakeholders found it challenging to describe the EML concept in the Australian context because many perceived it was generally used in resource scarce settings. Stakeholders were unable to distinguish whether nationally reimbursed medicines were essential medicines in Australia. Despite frequent generic drug shortages and high prices paid by consumers, many struggled to describe how the EML concept applied to Australia. Instead, broad inclusion of consumer needs, such as rare and high cost medicines, and consumer involvement in the decision making process, has led to expansive lists of nationally subsidised medicines. Therefore, improved communication and coordination is needed around shared interests between stakeholders regarding how medicines are prioritised and guaranteed in the supply chain.

Conclusions

This study showed that decision-making in Australia around reimbursement of medicines has strayed from the fundamental utilitarian concept of essential medicines. Many stakeholders involved in medicine reimbursement decisions and management of the supply chain did not consider the EML concept in their approach. The wide range of views of what stakeholders considered were essential medicines, challenges whether the EML concept is out-dated or underutilised in high income countries.  相似文献   
972.
BackgroundDengue laboratory diagnosis is essentially based on detection of the virus, its components or antibodies directed against the virus in blood samples. Blood, however, may be difficult to draw in some patients, especially in children, and sampling during outbreak investigations or epidemiological studies may face logistical challenges or limited compliance to invasive procedures from subjects. The aim of this study was to assess the possibility of using saliva and urine samples instead of blood for dengue diagnosis.ConclusionsAlthough the performances of the different diagnostic methods were not as good in saliva and urine as in plasma specimens, the results obtained by qRT-PCR and by anti-DENV antibody ELISA could well justify the use of these two body fluids to detect dengue infection in situations when the collection of blood specimens is not possible.  相似文献   
973.

Background

Dengue is the commonest arboviral disease of humans. An early and accurate diagnosis of dengue can support clinical management, surveillance and disease control and is central to achieving the World Health Organisation target of a 50% reduction in dengue case mortality by 2020.

Methods

5729 children with fever of <72hrs duration were enrolled into this multicenter prospective study in southern Vietnam between 2010-2012. A composite of gold standard diagnostic tests identified 1692 dengue cases. Using statistical methods, a novel Early Dengue Classifier (EDC) was developed that used patient age, white blood cell count and platelet count to discriminate dengue cases from non-dengue cases.

Results

The EDC had a sensitivity of 74.8% (95%CI: 73.0-76.8%) and specificity of 76.3% (95%CI: 75.2-77.6%) for the diagnosis of dengue. As an adjunctive test alongside NS1 rapid testing, sensitivity of the composite test was 91.6% (95%CI: 90.4-92.9%).

Conclusions

We demonstrate that the early diagnosis of dengue can be enhanced beyond the current standard of care using a simple evidence-based algorithm. The results should support patient management and clinical trials of specific therapies.  相似文献   
974.
Targeted therapies of malignancies currently consist of therapeutic monoclonal antibodies and small molecule kinase inhibitors. The combination of these novel agents raises the issue of potential antagonisms. We evaluated the potential effect of 4 kinase inhibitors, including the Bruton tyrosine kinase inhibitor ibrutinib, and 3 PI3K inhibitors idelalisib, NVP-BEZ235 and LY294002, on the effects of the 3 monoclonal antibodies, rituximab and obinutuzumab (directed against CD20) and trastuzumab (directed against HER2). We found that ibrutinib potently inhibits antibody-dependent cell-mediated cytotoxicity exerted by all antibodies, with a 50% inhibitory concentration of 0.2 microM for trastuzumab, 0.5 microM for rituximab and 2 microM for obinutuzumab, suggesting a lesser effect in combination with obinutuzumab than with rituximab. The 4 kinase inhibitors were found to inhibit phagocytosis by fresh human neutrophils, as well as antibody-dependent cellular phagocytosis induced by the 3 antibodies. Conversely co-administration of ibrutinib with rituximab, obinutuzumab or trastuzumab did not demonstrate any inhibitory effect of ibrutinib in vivo in murine xenograft models. In conclusion, some kinase inhibitors, in particular, ibrutinib, are likely to exert inhibitory effects on innate immune cells. However, these effects do not compromise the antitumor activity of monoclonal antibodies in vivo in the models that were evaluated.  相似文献   
975.
Hereditary hemorrhagic telangiectasia (HHT), a genetic vascular disorder associated with epistaxis and hepatic shunts, is responsible for high-output cardiac failure in rare cases. Bevacizumab, which targets vascular endothelial growth factor, was shown to decrease both cardiac index (CI) and epistaxis duration in HHT patients with severe liver involvement. The relationship between its serum concentration and change in both CI and epistaxis duration was investigated to design the bevacizumab maintenance dosing regimen of future therapeutic studies. Twenty-five HHT patients with dyspnea and high CI were included in a prospective non-comparative study. They received bevacizumab at a dose of 5 mg/kg per infusion every 14 days for a total of 6 injections. The relationships between bevacizumab serum concentration and both CI and epistaxis duration were described using transit compartments and direct inhibition pharmacokinetic-pharmacodynamic models. The performances of different maintenance regimens were evaluated using simulation. Infusions every 3, 2 and one months were predicted to maintain 41%, 45% and 50% of patients with CI <4 L/min/m2 at 24 months, respectively. The fraction of patients with <20 min epistaxis per month was predicted to be 34%, 43% and 60%, with infusion every 3, 2 or one months, respectively. Simulations of the effects of different maintenance dosing regimens predict that monthly 5 mg/kg infusions of bevacizumab should allow sustained control of both cardiac index and epistaxis.  相似文献   
976.
The minichromosome maintenance complex (MCM) proteins are required for processive DNA replication and are a target of S-phase checkpoints. The eukaryotic MCM complex consists of six proteins (MCM2–7) that form a heterohexameric ring with DNA helicase activity, which is loaded on chromatin to form the pre-replication complex. Upon entry in S phase, the helicase is activated and opens the DNA duplex to recruit DNA polymerases at the replication fork. The MCM complex thus plays a crucial role during DNA replication, but recent work suggests that MCM proteins could also be involved in DNA repair. Here, we employed a combination of stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics with immunoprecipitation of green fluorescent protein-tagged fusion proteins to identify proteins interacting with the MCM complex, and quantify changes in interactions in response to DNA damage. Interestingly, the MCM complex showed very dynamic changes in interaction with proteins such as Importin7, the histone chaperone ASF1, and the Chromodomain helicase DNA binding protein 3 (CHD3) following DNA damage. These changes in interactions were accompanied by an increase in phosphorylation and ubiquitination on specific sites on the MCM proteins and an increase in the co-localization of the MCM complex with γ-H2AX, confirming the recruitment of these proteins to sites of DNA damage. In summary, our data indicate that the MCM proteins is involved in chromatin remodeling in response to DNA damage.DNA replication during the S phase necessitates that the entire genome be duplicated with the minimum of errors. Thousands of replication forks are involved in this process and they must be coordinated to ensure that every section of DNA is only replicated once. Errors in DNA replication are likely to be a major cause of the genetic instability that can lead to cancer (1). Cells are able to prevent duplicate replication of DNA by having a distinct stage that occurs during the G1 phase when replication origins are “licensed” for replication, a process that involves the preloading of several proteins involved in DNA replication (2). As DNA is replicated at each origin, these proteins are removed, thereby ensuring that each origin fires only once during each S phase. DNA damage response kinases activated by the stalled forks prevent the replication machinery from being activated in new chromosome domains, indicating a tight relationship between the DNA damage response and the DNA replication pathways (3, 4).The first step of the replication licensing mechanism is the loading of the minichromosome maintenance (MCM)1 proteins on to replication origins along with origin recognition complex proteins, Cdt6 and Cdt1 (5). The eukaryotic MCM complex consists of six paralogs that form a heterohexameric ring. All eukaryotic organisms possess six homologous proteins (MCM2-MCM7) that form a heterohexameric ring that belong to the family of AAA+ (ATPase associated with various cellular activities) proteins and share similarities to other hexameric helicases (6). Even though additional MCM proteins have been identified in higher eukaryotes, the MCM2-MCM7 complex remains the prime candidate for the role of replicative helicase (7). MCM2–7 is required for both initiation and elongation of DNA replication, with its regulation at each stage being an essential player of eukaryotic DNA replication (8). As a critical mechanism to ensure only a single round of DNA replication, the loading of additional MCM2–7 complexes onto origins of replication is inactivated by redundant mechanisms after passage into S phase (9).The MCM complex plays a crucial role in determining the replication potential of cells, but recent work suggests that MCM proteins are not only targets of the S-phase checkpoints, but they also interact directly with components of the checkpoint and repair pathways (10, 11). In yeast, temperature sensitive MCM cells at restrictive temperature contain numerous foci recognized by the phosphorylated histone H2AX antibody (12), suggesting a role in the repair of DNA double-strand breaks. Although, in principle, only two DNA helicase activities are required to establish a bidirectional replication fork from each origin, a relatively large excess of MCM complexes are loaded at origins of replication and distributed along the chromatin (13). Their function is not well understood, and most of them are displaced from the DNA during S-phase, apparently without having played an active role in DNA replication. The “MCM paradox” refers to the fact that, at least in yeast, Xenopus, Drosophila, and mammalian cells, it is possible to reduce the concentration of MCM proteins by more than 90% without impairing DNA replication (1418) and also refers to the observation that the majority of MCM complexes do not localize to the sites of DNA synthesis in mammalian cells, further suggesting a potential role for the MCM proteins beyond DNA replication.Using a combination of stable isotope labeling with amino acids in cell culture (SILAC)–based quantitative proteomics (19) with immunoprecipitation of green fluorescent protein (GFP)-tagged fusion proteins (20), we identified differences in protein binding partners with the MCM complex following DNA damage. Stable cell lines expressing GFP-tagged MCM2 and MCM5 were used in immunoprecipitation experiments from cells that were either mock treated, or treated with Etoposide for 15, 60, and 240 min. Etoposide is an antitumor drug that stabilizes a covalent complex between the DNA topoisomerase II and DNA by interfering with the cleavage-ligation reaction of the topoisomerase (21). This revealed specific interaction between the MCM complex and several proteins such as Nucleophosmin, BAG2, UPP1, and HDAC10. Interestingly, the MCM complex showed dynamic changes in interaction with Importin7 and the histone chaperone ASF1, and a decrease in interaction with the Chromodomain helicase DNA binding protein 3 (CHD3) resulting from the treatment with etoposide. This increase in interaction with ASF1 was followed by an enrichment of histone proteins, suggesting a novel role for the MCM proteins in histone deposition on chromatin following DNA damage.  相似文献   
977.
The small Rho-family GTPase Cdc42 is critical for cell polarization and polarizes spontaneously in absence of upstream spatial cues. Spontaneous polarization is thought to require dynamic Cdc42 recycling through Guanine nucleotide Dissociation Inhibitor (GDI)-mediated membrane extraction and vesicle trafficking. Here, we describe a functional fluorescent Cdc42 allele in fission yeast, which demonstrates Cdc42 dynamics and polarization independent of these pathways. Furthermore, an engineered Cdc42 allele targeted to the membrane independently of these recycling pathways by an amphipathic helix is viable and polarizes spontaneously to multiple sites in fission and budding yeasts. We show that Cdc42 is highly mobile at the membrane and accumulates at sites of activity, where it displays slower mobility. By contrast, a near-immobile transmembrane domain-containing Cdc42 allele supports viability and polarized activity, but does not accumulate at sites of activity. We propose that Cdc42 activation, enhanced by positive feedback, leads to its local accumulation by capture of fast-diffusing inactive molecules.  相似文献   
978.
Dendritic cells (DCs) and macrophages (Møs) internalize and process exogenous HIV-derived antigens for cross-presentation by MHC-I to cytotoxic CD8+ T cells (CTL). However, how degradation patterns of HIV antigens in the cross-presentation pathways affect immunodominance and immune escape is poorly defined. Here, we studied the processing and cross-presentation of dominant and subdominant HIV-1 Gag-derived epitopes and HLA-restricted mutants by monocyte-derived DCs and Møs. The cross-presentation of HIV proteins by both DCs and Møs led to higher CTL responses specific for immunodominant epitopes. The low CTL responses to subdominant epitopes were increased by pretreatment of target cells with peptidase inhibitors, suggestive of higher intracellular degradation of the corresponding peptides. Using DC and Mø cell extracts as a source of cytosolic, endosomal or lysosomal proteases to degrade long HIV peptides, we identified by mass spectrometry cell-specific and compartment-specific degradation patterns, which favored the production of peptides containing immunodominant epitopes in all compartments. The intracellular stability of optimal HIV-1 epitopes prior to loading onto MHC was highly variable and sequence-dependent in all compartments, and followed CTL hierarchy with immunodominant epitopes presenting higher stability rates. Common HLA-associated mutations in a dominant epitope appearing during acute HIV infection modified the degradation patterns of long HIV peptides, reduced intracellular stability and epitope production in cross-presentation-competent cell compartments, showing that impaired epitope production in the cross-presentation pathway contributes to immune escape. These findings highlight the contribution of degradation patterns in the cross-presentation pathway to HIV immunodominance and provide the first demonstration of immune escape affecting epitope cross-presentation.  相似文献   
979.
BackgroundLoss of biodiversity and increased nutrient inputs are two of the most crucial anthropogenic factors driving ecosystem change. Although both received considerable attention in previous studies, information on their interactive effects on ecosystem functioning is scarce. In particular, little is known on how soil biota and their functions are affected by combined changes in plant diversity and fertilization.Conclusions/SignificanceOur study highlights the role of plant species and functional group diversity as well as interactions between plant community composition and fertilizer application for soil microbial functions. Our results suggest soil microbial stoichiometry to be a powerful indicator of microbial functioning under N limited conditions. Although our results support the notion that plant diversity and fertilizer application independently affect microbial functioning, legume effects on microbial N limitation were superimposed by fertilization, indicating significant interactions between the functional composition of plant communities and nutrient inputs for soil processes.  相似文献   
980.
IntroductionMental impairments, including deterioration of mood and cognitive performance, are known to occur during isolation and space missions, but have been insufficiently investigated. Appropriate countermeasures are required, such as exercise, which is known to prevent mood disorders for prolonged space and isolation missions. Based on the interaction of brain activity, mood and cognitive performance, this study aims to investigate the effect of long-term isolation and confinement and the long-term effect of exercise on these parameters.MethodsEight male volunteers were isolated and confined for about eight month during the winter period at the Antarctic Concordia Station. Every six weeks electroencephalographic measurements were recorded under rest conditions, and cognitive tests and a mood questionnaire were executed. Based individual training logs, subjects were afterwards separated into an active (> 2500 arbitrary training units/interval) or inactive (< 2500 arbitrary training units/interval) group.ResultsA long-term effect of exercise was observed for brain activity and mood. Regularly active people showed a decreased brain activity (alpha and beta) in the course of isolation, and steady mood. Inactive people instead first increased and than remained at high brain activity accompanied with a deterioration of mood. No effect of exercise and isolation was found for cognitive performance.ConclusionThe findings point out the positive effect of regularly performed voluntary exercise, supporting subjective mental well-being of long-term isolated people. The choice to be regularly active seems to support mental health, which is not only of interest for future isolation and space missions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号