首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1654篇
  免费   138篇
  国内免费   5篇
  1797篇
  2024年   2篇
  2023年   35篇
  2022年   61篇
  2021年   91篇
  2020年   49篇
  2019年   53篇
  2018年   56篇
  2017年   47篇
  2016年   67篇
  2015年   117篇
  2014年   120篇
  2013年   146篇
  2012年   168篇
  2011年   139篇
  2010年   79篇
  2009年   68篇
  2008年   76篇
  2007年   65篇
  2006年   63篇
  2005年   45篇
  2004年   55篇
  2003年   39篇
  2002年   26篇
  2001年   16篇
  2000年   9篇
  1999年   24篇
  1998年   6篇
  1997年   4篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   6篇
  1991年   7篇
  1990年   2篇
  1989年   8篇
  1988年   2篇
  1987年   6篇
  1986年   8篇
  1985年   2篇
  1984年   4篇
  1983年   5篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1936年   1篇
排序方式: 共有1797条查询结果,搜索用时 15 毫秒
141.
142.
143.
It is generally thought that the adsorption rate of a bacteriophage correlates positively with fitness, but this view neglects that most phages rely only on exponentially growing bacteria for productive infections. Thus, phages must cope with the environmental stochasticity that is their hosts’ physiological state. If lysogeny is one alternative, it is unclear how strictly lytic phages can survive the host stationary phase. Three scenarios may explain their maintenance: (1) pseudolysogeny, (2) diversified, or (3) conservative bet hedging. To better understand how a strictly lytic phage survives the stationary phase of its host, and how phage adsorption rate impacts this survival, we challenged two strictly lytic phage λ, differing in their adsorption rates, with stationary phase Escherichia coli cells. Our results showed that, pseudolysogeny was not responsible for phage survival and that, contrary to our expectation, high adsorption rate was not more detrimental during stationary phase than low adsorption rate. Interestingly, this last observation was due to the presence of the “residual fraction” (phages exhibiting extremely low adsorption rates), protecting phage populations from extinction. Whether this cryptic phenotypic variation is an adaptation (diversified bet hedging) or merely reflecting unavoidable defects during protein synthesis remains an open question.  相似文献   
144.
The extracellular alkaline protease produced by Pseudomonas aeruginosa is secreted by a specific pathway, independent of the pathway used by most of the other extracellular proteins of this organism. Secretion of this protease is dependent on the presence of several genes located adjacent to the apr gene. Complementation studies have shown that PrtD, E, and F, the three secretion functions for Erwinia chrysanthemi proteases B and C (Létoffé et al., 1990), can mediate the secretion of the alkaline protease by Escherichia coli. The secretion functions involved in alpha-haemolysin secretion in E. coli (hlyB, hlyD, tolC) can also be used to complement alkaline protease secretion by E. coli, although less efficiently. These data indicate that protease secretion mechanisms in Pseudomonas and Erwinia are very similar and are homologous to that of E. coli alpha-haemolysin.  相似文献   
145.

Background  

Cynara cardunculus L. is an edible plant of pharmaceutical interest, in particular with respect to the polyphenolic content of its leaves. It includes three taxa: globe artichoke, cultivated cardoon, and wild cardoon. The dominating phenolics are the di-caffeoylquinic acids (such as cynarin), which are largely restricted to Cynara species, along with their precursor, chlorogenic acid (CGA). The scope of this study is to better understand CGA synthesis in this plant.  相似文献   
146.
The influence of salicylic acid (SA) on elicitation of defense mechanisms in Arabidopsis (Arabidopsis thaliana) seeds and seedlings was assessed by physiological measurements combined with global expression profiling (proteomics). Parallel experiments were carried out using the NahG transgenic plants expressing the bacterial gene encoding SA hydroxylase, which cannot accumulate the active form of this plant defense elicitor. SA markedly improved germination under salt stress. Proteomic analyses disclosed a specific accumulation of protein spots regulated by SA as inferred by silver-nitrate staining of two-dimensional gels, detection of carbonylated (oxidized) proteins, and neosynthesized proteins with [35S]-methionine. The combined results revealed several processes potentially affected by SA. This molecule enhanced the reinduction of the late maturation program during early stages of germination, thereby allowing the germinating seeds to reinforce their capacity to mount adaptive responses in environmental water stress. Other processes affected by SA concerned the quality of protein translation, the priming of seed metabolism, the synthesis of antioxidant enzymes, and the mobilization of seed storage proteins. All the observed effects are likely to improve seed vigor. Another aspect revealed by this study concerned the oxidative stress entailed by SA in germinating seeds, as inferred from a characterization of the carbonylated (oxidized) proteome. Finally, the proteomic data revealed a close interplay between abscisic signaling and SA elicitation of seed vigor.  相似文献   
147.
The human amniotic membrane (hAM) has been successfully used as a natural carrier containing amniotic mesenchymal stromal cells, epithelial cells and growth factors. It has a little or no immunogenicity, and possesses useful anti-microbial, anti-inflammatory, anti-fibrotic and analgesic properties. It has been used for many years in several indications for soft tissue repair. We previously reported that hAM represents a natural and preformed sheet containing highly potent stem cells, and could thus be used for bone repair. Indeed, native hAM possesses pre-osteoblastic potential that can easily be stimulated, even as far as mineralization, by means of in vitro osteogenic culture. However, cell culture induces damage to the tissue, as well as to cell phenotype and function. The aim of this study was to evaluate new bone formation by fresh and in vitro osteodifferentiated hAM, alone or associated with an additional scaffold presenting osteoinductive properties. Moreover, we also aimed to determine the effect of in vitro hAM pre-osteodifferentiation on its in vivo biocompatibility/tissue degradation. Results showed that neither fresh nor osteodifferentiated hAM induced ectopic bone formation, whether or not it was associated with the osteoinductive scaffold. Secondly, fresh and osteodifferentiated hAM presented similar in vivo tissue degradation, suggesting that in vitro hAM pre-osteodifferentiation did not influence its in vivo biocompatibility.  相似文献   
148.

Residues of the second extracellular loop are believed to be important for ligand recognition in adenosine receptors. Molecular modeling studies have suggested that one such residue, Gln 167 of the human A 3 receptor, is in proximity to the C2 moiety of some adenosine analogs when bound. Here this putative interaction was systematically explored using a neoceptor strategy, i.e., by site-directed mutagenesis and examination of the affinities of nucleosides modified to have complementary functionality. Gln 167 was mutated to Ala, Glu, and Arg, while the 2-position of several adenosine analogs was substituted with amine or carboxylic acid groups. All compounds tested lost affinity to the mutant receptors in comparison to the wild type. However, comparing affinities among the mutant receptors, several compounds bearing charge at the 2-position demonstrated preferential affinity for the mutant receptor bearing a residue of complementary charge. 13, with a positively-charged C2 moiety, displayed an 8.5-fold increase in affinity at the Q167E mutant receptor versus the Q167R mutant receptor. Preferential affinity for specific mutant receptors was also observed for 8 and 12. The data suggests that a direct contact is made between the C2 substituent of some charged ligands and the mutant receptor bearing the opposite charge at position 167.  相似文献   
149.
150.
The chemically synthesized signal peptide (native-sequence signal peptide) of preproparathyroid hormone exhibits signal sequence-like activity by inhibiting the translocation/processing of precursor proteins to their mature forms in an in vitro translation system. In order to prepare a biologically functional radiolabeled form of this peptide, we undertook structure-function studies of the native-sequence signal peptide. Since conventional iodination of peptides is performed under oxidizing conditions, chemical design efforts were focused on the oxidation-labile residues, methionine and cysteine, present in the native sequence. Substitution of the three methionines with norleucine and the single cysteine with alanine yielded a surfur-free analog, [Nle-(-25), Nle-(-21),Nle-(-18),Ala-(-14),D-Tyr-(+1)]pre-proPTH-(-29-+1)amide, which is resistant to oxidation and active in the inhibition of processing assay. An interaction between the signal region and one of the components of the intracellular secretory apparatus, signal recognition particle (SRP), was demonstrated: iodinated sulfur-free analog was cross-linked (using the homo-bifunctional reagent disuccinimidyl suberate) to the 54 kilodalton (kDa) subunit of SRP. The 68 kDa and 72 kDa subunits of SRP were also labeled, but to a lesser extent, by the iodinated peptide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号