首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4187篇
  免费   260篇
  国内免费   3篇
  2021年   38篇
  2020年   44篇
  2019年   35篇
  2018年   48篇
  2017年   42篇
  2016年   67篇
  2015年   126篇
  2014年   154篇
  2013年   215篇
  2012年   270篇
  2011年   238篇
  2010年   180篇
  2009年   178篇
  2008年   199篇
  2007年   250篇
  2006年   263篇
  2005年   260篇
  2004年   225篇
  2003年   195篇
  2002年   227篇
  2001年   52篇
  2000年   38篇
  1999年   68篇
  1998年   80篇
  1997年   39篇
  1996年   44篇
  1995年   47篇
  1994年   56篇
  1993年   35篇
  1992年   39篇
  1991年   34篇
  1990年   43篇
  1989年   20篇
  1988年   29篇
  1987年   25篇
  1986年   25篇
  1985年   32篇
  1984年   40篇
  1983年   29篇
  1982年   36篇
  1981年   29篇
  1980年   33篇
  1979年   18篇
  1978年   27篇
  1977年   20篇
  1976年   23篇
  1975年   20篇
  1974年   22篇
  1973年   25篇
  1967年   16篇
排序方式: 共有4450条查询结果,搜索用时 15 毫秒
121.
Root-associated fungi (RAF) link nutrient fluxes between soil and roots and thus play important roles in ecosystem functioning. To enhance our understanding of the factors that control RAF, we fitted statistical models to explain variation in RAF community structure using data from 150 temperate forest sites covering a broad range of environmental conditions and chemical root traits. We found that variation in RAF communities was related to both root traits (e.g., cations, carbohydrates, NO3) and soil properties (pH, cations, moisture, C/N). The identified drivers were the combined result of distinct response patterns of fungal taxa (determined at the rank of orders) to biotic and abiotic factors. Our results support that RAF community variation is related to evolutionary adaptedness of fungal lineages and consequently, drivers of RAF communities are context-dependent.  相似文献   
122.
Fungi play many essential roles in ecosystems. They facilitate plant access to nutrients and water, serve as decay agents that cycle carbon and nutrients through the soil, water and atmosphere, and are major regulators of macro‐organismal populations. Although technological advances are improving the detection and identification of fungi, there still exist key gaps in our ecological knowledge of this kingdom, especially related to function . Trait‐based approaches have been instrumental in strengthening our understanding of plant functional ecology and, as such, provide excellent models for deepening our understanding of fungal functional ecology in ways that complement insights gained from traditional and ‐omics‐based techniques. In this review, we synthesize current knowledge of fungal functional ecology, taxonomy and systematics and introduce a novel database of fungal functional traits (FunFun). FunFun is built to interface with other databases to explore and predict how fungal functional diversity varies by taxonomy, guild, and other evolutionary or ecological grouping variables. To highlight how a quantitative trait‐based approach can provide new insights, we describe multiple targeted examples and end by suggesting next steps in the rapidly growing field of fungal functional ecology.  相似文献   
123.
Arctic and boreal ecosystems play an important role in the global carbon (C) budget, and whether they act as a future net C sink or source depends on climate and environmental change. Here, we used complementary in situ measurements, model simulations, and satellite observations to investigate the net carbon dioxide (CO2) seasonal cycle and its climatic and environmental controls across Alaska and northwestern Canada during the anomalously warm winter to spring conditions of 2015 and 2016 (relative to 2010–2014). In the warm spring, we found that photosynthesis was enhanced more than respiration, leading to greater CO2 uptake. However, photosynthetic enhancement from spring warming was partially offset by greater ecosystem respiration during the preceding anomalously warm winter, resulting in nearly neutral effects on the annual net CO2 balance. Eddy covariance CO2 flux measurements showed that air temperature has a primary influence on net CO2 exchange in winter and spring, while soil moisture has a primary control on net CO2 exchange in the fall. The net CO2 exchange was generally more moisture limited in the boreal region than in the Arctic tundra. Our analysis indicates complex seasonal interactions of underlying C cycle processes in response to changing climate and hydrology that may not manifest in changes in net annual CO2 exchange. Therefore, a better understanding of the seasonal response of C cycle processes may provide important insights for predicting future carbon–climate feedbacks and their consequences on atmospheric CO2 dynamics in the northern high latitudes.  相似文献   
124.
Filamentous fungi are important cell factories for large-scale enzyme production. However, production levels are often low, and this limitation has stimulated research focusing on the manipulation of genes with predicted function in the protein secretory pathway. This pathway is the major route for the delivery of proteins to the cell exterior, and a positive relationship between the production of recombinant enzymes and the unfolded protein response (UPR) pathway has been observed. In this study, Aspergillus nidulans was exposed to UPR-inducing chemicals and differentially expressed genes were identified by RNA-seq. Twelve target genes were deleted in A. nidulans recombinant strains producing homologous and heterologous GH10 xylanases. The knockout of pbnA (glycosyltransferase), ydjA (Hsp40 co-chaperone), trxA (thioredoxin) and cypA (cyclophilin) improved the production of the homologous xylanase by 78, 171, 105 and 125% respectively. Interestingly, these deletions decreased the overall protein secretion, suggesting that the production of the homologous xylanase was specifically altered. However, the production of the heterologous xylanase and the secretion of total proteins were not altered by deleting the same genes. Considering the results, this approach demonstrated the possibility of rationally increase the production of a homologous enzyme, indicating that trxA, cypA, ydjA and pbnA are involved in protein production by A. nidulans.  相似文献   
125.
Reviews in Fish Biology and Fisheries - The intestinal mucosal barrier plays a critical role in the maintenance of host health. In farmed teleost fish, the intestinal epithelium is challenged by a...  相似文献   
126.
127.
128.
Highlights? FOXO forms redox-sensitive, disulfide-dependent complexes with several proteins ? Transportin-1 binds to FOXO via a disulfide and regulates its nuclear localization ? Redox and insulin signaling govern FOXO nuclear localization via distinct pathways ? Redox control of longevity protein FOXO/DAF-16 is evolutionarily conserved  相似文献   
129.
The striated muscles of Derocheilocaris typica consist of mononucleated cells, each containing one filament bundle. Large muscles consist of two or more cells adjacent to each other. The mitochondria line up along the filament bundle on one side. The nucleus is situated in the mitochondrial row and has a small cytoplasmic area around it filled with glycogen. The sarcomeres are between 3 and 6 μm long. The Z-line and H band are present. Six thin filaments surround one thick filament. All muscles belong to the phasic type. The tubular system emanates from the ends of the muscle cell and penetrates the whole cell. The tubules are formed as cisterns, which also open at the cell membrane at the level of the I bands. They have sarcoplasmic cisterns on both sides forming a continuous triad system. Partially transformed epidermal cells mediate muscle insertions on the cuticle. Tendons are formed with the transformed epidermal cells being supplemented by fibroblasts forming collagen fibers. Dorsal and ventral abdominal muscles are innervated from the dorso-lateral nerve arising from the nerve chain. Each muscle cell receives one axon, which forms one synapse on the mitochondrial-free side of the muscles. Axons form terminal spines, which make axo-axonal synapses.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号