首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5804篇
  免费   442篇
  国内免费   2篇
  6248篇
  2023年   17篇
  2022年   38篇
  2021年   68篇
  2020年   50篇
  2019年   51篇
  2018年   79篇
  2017年   70篇
  2016年   117篇
  2015年   185篇
  2014年   260篇
  2013年   341篇
  2012年   348篇
  2011年   384篇
  2010年   261篇
  2009年   252篇
  2008年   342篇
  2007年   366篇
  2006年   341篇
  2005年   346篇
  2004年   305篇
  2003年   287篇
  2002年   305篇
  2001年   68篇
  2000年   57篇
  1999年   81篇
  1998年   109篇
  1997年   86篇
  1996年   74篇
  1995年   58篇
  1994年   63篇
  1993年   66篇
  1992年   49篇
  1991年   56篇
  1990年   40篇
  1989年   58篇
  1988年   45篇
  1987年   31篇
  1986年   42篇
  1985年   34篇
  1984年   31篇
  1983年   24篇
  1982年   52篇
  1981年   33篇
  1980年   33篇
  1979年   23篇
  1978年   16篇
  1977年   23篇
  1976年   16篇
  1975年   21篇
  1974年   15篇
排序方式: 共有6248条查询结果,搜索用时 18 毫秒
51.
Biomechanics and Modeling in Mechanobiology - Living soft tissues appear to promote the development and maintenance of a preferred mechanical state within a defined tolerance around a so-called set...  相似文献   
52.
Short-chain fatty acids (SCFAs) are the predominant luminal anion in the mammalian colon. Although they are rapidly absorbed in vivo, little is known about the mechanisms of transepithelial transport in vitro. Previous studies have suggested that SCFA transport may be linked to Na absorption or an anion exchange mechanism. We compared the transport of propionate under short-circuit conditions in rabbit proximal and distal colon to determine whether there were segmental differences, how SCFAs may be linked to either Na absorption or anion transport, and whether SCFAs, as weak electrolytes, may be affected by transepithelial pH gradients. In distal colon, propionate transport was not significantly altered by stimulation of electrogenic Na absorption, epinephrine or Cl removal. However, a modest transepithelial pH gradient (luminal 6.8/serosal 7.4) stimulated propionate absorption. In proximal colon, propionate transport was significantly altered by manuevers that either stimulated (lowered [Na] in the bathing media) or inhibited (theophylline) apical Na−H exchange. Neither Cl removal, nor the anion exchange inhibitor DIDS, nor a transepithelial bicarbonate gradient, altered propionate transport. A transepithelial pH gradient inhibited propionate secretion, but not in a manner entirely consistent with the effect of pH on the distribution of a weak electrolyte. These results suggest that there is significant segmental heterogeneity in colonic SCFA transport; that transepithelial propionate fluxes are altered by changes in pH or electroneutral Na absorption (Na−H exchange), but not by chloride removal, bicarbonate gradients or electrogenic Na absorption. Regulation of SCFA transport may be an important factor in the physiology of colonic fluid balance.  相似文献   
53.
The anatomy and functionality of the stomatogastric nervous system (SNS) of third-instar larvae of Calliphora vicina was characterised. As in other insects, the Calliphora SNS consists of several peripheral ganglia involved in foregut movement regulation. The frontal ganglion gives rise to the frontal nerve and is connected to the brain via the frontal connectives and antennal nerves (ANs). The recurrent nerve connects the frontal- to the hypocerebral ganglion from which the proventricular nerve runs to the proventricular ganglion. Foregut movements include rhythmic contractions of the cibarial dilator muscles (CDM), wavelike movements of crop and oesophagus and contractions of the proventriculus. Transections of SNS nerves indicate mostly myogenic crop and oesophagus movements and suggest modulatory function of the associated nerves. Neural activity in the ANs, correlating with postsynaptic potentials on the CDM, demonstrates a motor pathway from the brain to CDM. Crop volume is monitored by putative stretch receptors. The respective sensory pathway includes the recurrent nerve and the proventricular nerve. The dorsal organs (DOs) are directly connected to the SNS. Mechanical stimulation of the DOs evokes sensory activity in the AN. This suggests the DOs can provide sensory input for temporal coordination of feeding behaviour.  相似文献   
54.

Background

Because mitochondria play an essential role in energy metabolism, generation of reactive oxygen species (ROS), and apoptosis, sequence variation in the mitochondrial genome has been postulated to be a contributing factor to the etiology of multifactorial age-related diseases, including cancer. The aim of the present study was to compare the frequencies of mitochondrial DNA (mtDNA) haplogroups as well as control region (CR) polymorphisms of patients with malignant melanoma (n = 351) versus those of healthy controls (n = 1598) in Middle Europe.

Methodology and Principal Findings

Using primer extension analysis and DNA sequencing, we identified all nine major European mitochondrial haplogroups and known CR polymorphisms. The frequencies of the major mitochondrial haplogroups did not differ significantly between patients and control subjects, whereas the frequencies of the one another linked CR polymorphisms A16183C, T16189C, C16192T, C16270T and T195C were significantly higher in patients with melanoma compared to the controls. Regarding clinical characteristics of the patient cohort, none of the nine major European haplogroups was associated with either Breslow thickness or distant metastasis. The CR polymorphisms A302CC-insertion and T310C-insertion were significantly associated with mean Breslow thickness, whereas the CR polymorphism T16519C was associated with metastasis.

Conclusions and Significance

Our results suggest that mtDNA variations could be involved in melanoma etiology and pathogenesis, although the functional consequence of CR polymorphisms remains to be elucidated.  相似文献   
55.
56.
57.
IQGAP1 promotes neurite outgrowth in a phosphorylation-dependent manner   总被引:2,自引:0,他引:2  
In eukaryotic cells IQGAP1 binds to and alters the function of several proteins, including actin, E-cadherin, beta-catenin, Cdc42, and Rac1. Yeast IQGAP1 homologues have an important role in cytoskeletal organization, suggesting that modulation of the cytoskeleton is a fundamental role of IQGAP1. Phosphorylation is a common mechanism by which cells regulate protein function. Here we demonstrate that endogenous IQGAP1 is highly phosphorylated in MCF-7 human breast epithelial cells. Moreover, incubation of cells with phorbol 12-myristate 13-acetate (PMA) stimulated phosphate incorporation into IQGAP1. By using mass spectrometry, Ser-1443 was identified as the major site phosphorylated on IQGAP1 in intact cells treated with PMA. Ser-1441 was also phosphorylated but to a lesser extent. In vitro analysis with purified proteins documented that IQGAP1 is a substrate for protein kinase Cepsilon, which catalyzes phosphorylation on Ser-1443. Consistent with these findings, inhibition of cellular protein kinase C via bisindolymaleimide abrogated Ser-1443 phosphorylation in response to PMA. To elucidate the biological sequelae of phosphorylation, Ser-1441 and Ser-1443 were converted either to alanine, to create a nonphosphorylatable construct, or to glutamic acid and aspartic acid, respectively, to generate a phosphomimetic IQGAP1. Although overexpression of wild type IQGAP1 promoted neurite outgrowth in N1E-115 neuroblastoma cells, the nonphosphorylatable IQGAP1 S1441A/S1443A had no effect. In contrast, the S1441E/S1443D mutation markedly enhanced the ability of IQGAP1 to induce neurite outgrowth. Our data disclose that IQGAP1 is phosphorylated at multiple sites in intact cells and that phosphorylation of IQGAP1 will alter its ability to regulate the cytoskeleton of neuronal cells.  相似文献   
58.
59.
A novel series of phenylamino acetamide derivatives was synthesized. These amides were shown to be potent and selective kappa opioid receptor agonists.  相似文献   
60.
Mitochondria are indispensable for cell viability; however, major mitochondrial functions including citric acid cycle and oxidative phosphorylation are dispensable. Most known essential mitochondrial proteins are involved in preprotein import and assembly, while the only known essential biosynthetic process performed by mitochondria is the biogenesis of iron-sulfur clusters (ISC). The components of the mitochondrial ISC-assembly machinery are derived from the prokaryotic ISC-assembly machinery. We have identified an essential mitochondrial matrix protein, Isd11 (YER048w-a), that is found in eukaryotes only. Isd11 is required for biogenesis of cellular Fe/S proteins and thus is a novel subunit of the mitochondrial ISC-assembly machinery. It forms a complex with the cysteine desulfurase Nfs1 and is required for formation of an Fe/S cluster on the Isu scaffold proteins. We conclude that Isd11 is an indispensable eukaryotic component of the mitochondrial machinery for biogenesis of Fe/S proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号