首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5830篇
  免费   448篇
  国内免费   2篇
  6280篇
  2023年   17篇
  2022年   39篇
  2021年   68篇
  2020年   50篇
  2019年   51篇
  2018年   79篇
  2017年   71篇
  2016年   119篇
  2015年   186篇
  2014年   261篇
  2013年   343篇
  2012年   353篇
  2011年   386篇
  2010年   263篇
  2009年   253篇
  2008年   343篇
  2007年   366篇
  2006年   342篇
  2005年   346篇
  2004年   305篇
  2003年   287篇
  2002年   305篇
  2001年   73篇
  2000年   59篇
  1999年   84篇
  1998年   109篇
  1997年   86篇
  1996年   74篇
  1995年   58篇
  1994年   63篇
  1993年   66篇
  1992年   49篇
  1991年   56篇
  1990年   41篇
  1989年   58篇
  1988年   45篇
  1987年   31篇
  1986年   42篇
  1985年   34篇
  1984年   31篇
  1983年   24篇
  1982年   53篇
  1981年   33篇
  1980年   33篇
  1979年   23篇
  1978年   16篇
  1977年   23篇
  1976年   16篇
  1975年   21篇
  1974年   15篇
排序方式: 共有6280条查询结果,搜索用时 0 毫秒
151.
152.
The four functionally expressed human neuropeptide Y receptor subtypes (hY(1)R, hY(2)R, hY(4)R, hY(5)R) belong to class A of the G-protein-coupled receptors (GPCRs) and interact with pertussis toxin-sensitive G(i/o)-proteins. The number of small molecules described as ligands for hY(1)R and hY(5)R exceeds by far those for hY(2)R. Potent non-peptidergic ligands for the hY(4)R are not available so far. Here, we report on the functional reconstitution of the hY(2)R and the hY(4)R in Sf9 insect cells using the baculovirus system. Sf9 cells were genetically engineered by infection with up to four different baculoviruses, combining the receptors with G-proteins of the G(i/o) family and regulators of G-protein signaling (RGS) proteins to improve signal-to-noise ratio. In steady-state GTPase assays, using pNPY (Y(2)) and hPP (Y(4)), the GPCRs coupled to various G(i)/G(o)-proteins and both, RGS4 and GAIP, enhanced the signals. Co-expression systems hY(2)R + G?(i2) and hY(4)R + G?(i2)/G?(o) + RGS4, combined with G?(1)?(2), yielded best signal-to-noise ratios. hY(2)R function was validated using both agonistic peptides (NPY, PYY, NPY(13?36)) and selective non-peptidergic antagonists (BIIE0246 and derivatives), whereas the hY(4)R model was characterized with peptidergic agonists (PP, NPY, GW1229, and BW1911U90). Tunicamycin inhibited receptor N-glycosylation diminished NPY signals at hY(2)R and abolished hY(4)R function. Investigations with monovalent salts showed sensitivity of hY(4)R toward Na(+), revealing moderate constitutive activity. After validation, an acylguanidine (UR-PI284) was identified as a weak non-peptide Y(4)R antagonist. In summary, the established steady-state GTPase assays provide sensitive test systems for the characterization of Y(2) and Y(4) receptor ligands.  相似文献   
153.
The design of immunologic interventions to prevent postnatal transmission of human immunodeficiency virus (HIV) will require identification of protective immune responses in this setting. Simian immunodeficiency virus (SIV)-infected rhesus monkeys (RMs), a species that develops an AIDS-like illness following experimental infection, transmit the virus at a high rate during breastfeeding. In contrast, postnatal transmission of SIV occurs rarely or not at all in natural, asymptomatic primate hosts of SIV. These contrasting transmission patterns provide a unique opportunity to study mechanisms that evolved to protect suckling infants from SIV infection. We compared the virologic and immunologic properties of milk of SIV-infected and uninfected natural hosts of SIV, African green monkeys (AGMs), to that of RMs. Interestingly, despite a low number of milk CD4(+) T lymphocytes in uninfected AGMs, milk virus RNA load in SIV-infected AGMs was comparable to that of SIV-infected RMs and that in AGM plasma. This observation is in contrast to the relatively low virus load in milk compared to that in plasma of SIV-infected RMs and HIV-infected women. Milk of SIV-infected AGMs also displayed robust virus-specific cellular immune responses. Importantly, an autologous challenge virus-specific neutralization response was detected in milk of five of six SIV-infected AGMs that was comparable in magnitude to that in plasma. In contrast, autologous challenge virus neutralization was not detectable in milk of SIV-infected RMs. The autologous virus-specific adaptive immune responses in breast milk of AGMs may contribute to impedance of virus transmission in the infant oral/gastrointestinal tract and the rarity of postnatal virus transmission in natural hosts of SIV.  相似文献   
154.
The filamentous fungus Botryosphaeria rhodina (ATCC 9055) was investigated related to its ability for epoxide hydrolase (EH) production. Epoxide hydrolase activity is located at two different sites of the cells. The larger part is present in the cytosol (70%), while the smaller part is associated to membranes (30%). In media optimization experiments, an activity of 3.5 U/gDW for aromatic epoxide hydrolysis of para-nitro-styrene oxide (pNSO) could be obtained. Activity increased by 30% when pNSO was added to the culture during exponential growth. An increase of enzyme activity up to 6 U/gDW was achieved during batch-fermentations in a bioreactor with 2.7 l working volume. Evaluation of fermentations with 30 l working volume revealed a relation of oxygen uptake rate to EH expression. Oxygen limitation resulted in a decreased EH activity. Parameter estimation by the linearization method of Hanes yielded Km values of 2.54 and 1.00 mM for the substrates S-pNSO and R-pNSO, respectively. vmax was 3.4 times higher when using R-pNSO. A protein purification strategy leading to a 47-fold increase in specific activity (940 U/mgProtein) was developed as a first step to investigate molecular and structural characteristics of the EH.  相似文献   
155.
Dipeptidyl-peptidase IV (DPPIV) is involved in endocrine and immune functions via cleavage of regulatory peptides with a N-terminal proline or alanine such as incretins, neuropeptide Y, or several chemokines. So far no systematic investigations on the localization and transmission of the Dpp4 gene or the natural variations of DPPIV-like enzymatic function in different rat strains have been conducted. Here we mapped the Dpp4 gene to rat chromosome 3 and describe a semi-dominant mode of inheritance for Dpp4 in a mutant F344/DuCrj(DPPIV-) rat substrain lacking endogenous DPPIV-like activity. This mutant F344/DuCrj(DPPIV-) rat substrain constantly exhibits a nearly complete lack of DPPIV-like enzymatic activity, while segregation of DPPIV-like enzymatic activity was observed in another DPPIV-negative F344/Crl(Ger/DPPIV-) rat substrain. Screening of 12 different inbred laboratory rat strains revealed dramatic differences in DPPIV-like activity ranging from 11 mU/microl (LEW/Ztm rats) to 40 mU/microl (BN/Ztm and DA/Ztm rats). A lack of DPPIV-like activity in F344 rats was associated with an improved glucose tolerance and blunted natural killer cell function, which indicates the pleiotropic functional role of DPPIV in vivo. Overall, the variations in DPPIV-like enzymatic activity probably represent important confounding factors in studies using rat models for research on regulatory peptides.  相似文献   
156.
Protein tyrosine phosphorylation is a major regulator of bone metabolism. Tyrosine phosphatases participate in regulating phosphorylation, but roles of specific phosphatases in bone metabolism are largely unknown. We demonstrate that young (<12 weeks) female mice lacking tyrosine phosphatase epsilon (PTPepsilon) exhibit increased trabecular bone mass due to cell-specific defects in osteoclast function. These defects are manifested in vivo as reduced association of osteoclasts with bone and as reduced serum concentration of C-terminal collagen telopeptides, specific products of osteoclast-mediated bone degradation. Osteoclast-like cells are generated readily from PTPepsilon-deficient bone-marrow precursors. However, cultures of these cells contain few mature, polarized cells and perform poorly in bone resorption assays in vitro. Podosomes, structures by which osteoclasts adhere to matrix, are disorganized and tend to form large clusters in these cells, suggesting that lack of PTPepsilon adversely affects podosomal arrangement in the final stages of osteoclast polarization. The gender and age specificities of the bone phenotype suggest that it is modulated by hormonal status, despite normal serum levels of estrogen and progesterone in affected mice. Stimulation of bone resorption by RANKL and, surprisingly, Src activity and Pyk2 phosphorylation are normal in PTPepsilon-deficient osteoclasts, indicating that loss of PTPepsilon does not cause widespread disruption of these signaling pathways. These results establish PTPepsilon as a phosphatase required for optimal structure, subcellular organization, and function of osteoclasts in vivo and in vitro.  相似文献   
157.
DNA double-strand breaks are repaired by one of two main pathways, non-homologous end joining or homologous recombination. A competition for binding to DNA ends by Ku and Rad52, proteins required for non-homologous end joining and homologous recombination, respectively, has been proposed to determine the choice of repair pathway. In order to test this idea directly, we compared Ku and human Rad52 binding to different DNA substrates. How ever, we found no evidence that these proteins would compete for binding to the same broken DNA ends. Ku bound preferentially to DNA with free ends. Under the same conditions, Rad52 did not bind preferentially to DNA ends. Using a series of defined substrates we showed that it is single-stranded DNA and not DNA ends that were preferentially bound by Rad52. In addition, Rad52 aggregated DNA, bringing different single-stranded DNAs in close proximity. This activity was independent of the presence of DNA ends and of the ability of the single-stranded sequences to form extensive base pairs. Based on these DNA binding characteristics it is unlikely that Rad52 and Ku compete as ‘gatekeepers’ of different DNA double-strand break repair pathways. Rather, they interact with different DNA substrates produced early in DNA double-strand break repair.  相似文献   
158.
The opportunistic pathogen Aspergillus fumigatus is the most frequent cause of deadly airborne fungal infections in developed countries. In order to identify novel antifungal-drug targets, we investigated the genome of A. fumigatus for genes that are necessary for efficient fungal growth. An artificial A. fumigatus diploid strain with one copy of an engineered impala160 transposon from Fusarium oxysporum integrated into its genome was used to generate a library of diploid strains by random in vivo transposon mutagenesis. Among 2,386 heterozygous diploid strains screened by parasexual genetics, 1.2% had a copy of the transposable element integrated into a locus essential for A. fumigatus growth. Comparison of genomic sequences flanking impala160 in these mutants with that of the genome of A. fumigatus allowed the characterization of 20 previously uncharacterized A. fumigatus genes. Among these, homologues of genes essential for Saccharomyces cerevisiae growth have been identified, as well as genes that do not have homologues in other fungal species. These results confirm that heterologous transposition using the transposable element impala is a powerful tool for functional genomics in ascomycota, and they pave the way for defining the complete set of essential genes in A. fumigatus, the first step toward target-based development of new antifungal drugs.  相似文献   
159.
Oxidoreductases are a group of enzymes that have been regarded uneconomical for industrial processes due to their dependence on cofactors or prosthetic groups for activity and the difficulties of regenerating these. Especially, flavoproteins have long been neglected for biocatalytical applications. The prosthetic group of some of these enzymes, but not all, can be regenerated by oxygen, resulting in hydrogen peroxide formation, which is detrimental to enzyme stability. As a contribution to alleviating this problem, a novel concept for the regeneration of electron acceptors (redox mediators) for flavoenzymes is described. Flavin-containing enzymes such as cellobiose dehydrogenase (CDH) or pyranose oxidase (P2O) are used in conjunction with laccases and a redox mediator. The flavin of the synthetic enzyme is reduced while the oxidized product of interest is formed, in turn, the flavin is reoxidized with the help of an electron acceptor, which then is regenerated using a laccase. Laccases are copper containing phenol oxidases that can transfer four electrons to oxygen, producing two molecules of water. Preliminary screening experiments with different redox mediators, and a coupled enzyme system of CDH and laccase, showed that a wide variety of different substances can efficiently shuttle electrons between these two enzymes. Among them are substituted and unsubstituted ortho- and para-quinones, benzoquinone imines, cation radicals such as 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), redox dyes such as phenothiazines or phenoxazines, as well as iron complexes.

Experiments in which CDH completely oxidizes lactose to lactobionic acid and P2O entirely converts glucose to 2-keto-glucose are presented. Catalytic amounts of redox mediators are used and continuously regenerated by a laccase. Specific productivities of up to 19.3 g·(h·kU)−1 and 72 g·(h·kU)−1 for CDH and P2O, respectively, were found. The total turnover numbers (TTNs) for the two enzymes used were in the range of 105–106. Oxygen supply for the laccase is a crucial factor in avoiding rate limitation. Undeniably, this system facilitates the efficient use of a hitherto underexploited group of enzymes for preparative purposes.  相似文献   

160.
Pathogenesis of Helicobacter pylori infection   总被引:3,自引:0,他引:3  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号