首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5809篇
  免费   445篇
  国内免费   2篇
  6256篇
  2023年   17篇
  2022年   38篇
  2021年   68篇
  2020年   50篇
  2019年   51篇
  2018年   79篇
  2017年   71篇
  2016年   118篇
  2015年   185篇
  2014年   260篇
  2013年   341篇
  2012年   348篇
  2011年   384篇
  2010年   262篇
  2009年   253篇
  2008年   342篇
  2007年   366篇
  2006年   341篇
  2005年   347篇
  2004年   306篇
  2003年   288篇
  2002年   304篇
  2001年   68篇
  2000年   57篇
  1999年   81篇
  1998年   110篇
  1997年   87篇
  1996年   74篇
  1995年   58篇
  1994年   63篇
  1993年   66篇
  1992年   49篇
  1991年   56篇
  1990年   40篇
  1989年   58篇
  1988年   45篇
  1987年   31篇
  1986年   42篇
  1985年   34篇
  1984年   31篇
  1983年   24篇
  1982年   52篇
  1981年   33篇
  1980年   33篇
  1979年   23篇
  1978年   16篇
  1977年   23篇
  1976年   16篇
  1975年   21篇
  1974年   15篇
排序方式: 共有6256条查询结果,搜索用时 0 毫秒
991.
992.
Collective migration of mechanically coupled cell layers is a notable feature of wound healing, embryonic development, and cancer progression. In confluent epithelial sheets, the dynamics have been found to be highly heterogeneous, exhibiting spontaneous formation of swirls, long-range correlations, and glass-like dynamic arrest as a function of cell density. In contrast, the flow-like properties of one-sided cell-sheet expansion in confining geometries are not well understood. Here, we studied the short- and long-term flow of Madin-Darby canine kidney (MDCK) cells as they moved through microchannels. Using single-cell tracking and particle image velocimetry (PIV), we found that a defined averaged stationary cell current emerged that exhibited a velocity gradient in the direction of migration and a plug-flow-like profile across the advancing sheet. The observed flow velocity can be decomposed into a constant term of directed cell migration and a diffusion-like contribution that increases with density gradient. The diffusive component is consistent with the cell-density profile and front propagation speed predicted by the Fisher-Kolmogorov equation. To connect diffusion-mediated transport to underlying cellular motility, we studied single-cell trajectories and occurrence of vorticity. We discovered that the directed large-scale cell flow altered fluctuations in cellular motion at short length scales: vorticity maps showed a reduced frequency of swirl formation in channel flow compared with resting sheets of equal cell density. Furthermore, under flow, single-cell trajectories showed persistent long-range, random-walk behavior superimposed on drift, whereas cells in resting tissue did not show significant displacements with respect to neighboring cells. Our work thus suggests that active cell migration manifests itself in an underlying, spatially uniform drift as well as in randomized bursts of short-range correlated motion that lead to a diffusion-mediated transport.  相似文献   
993.
994.
995.
Climate extremes and land-use changes can have major impacts on the carbon cycle of ecosystems. Their combined effects have rarely been tested. We studied whether and how the abandonment of traditionally managed mountain grassland changes the resilience of carbon dynamics to drought. In an in situ common garden experiment located in a subalpine meadow in the Austrian Central Alps, we exposed intact ecosystem monoliths from a managed and an abandoned mountain grassland to an experimental early-summer drought and measured the responses of gross primary productivity, ecosystem respiration, phytomass and its components, and of leaf area index during the drought and the subsequent recovery period. Across all these parameters, the managed grassland was more strongly affected by drought and recovered faster than the abandoned grassland. A bivariate representation of resilience confirmed an inverse relationship of resistance and recovery; thus, low resistance was related to high recovery from drought and vice versa. In consequence, the overall perturbation of the carbon cycle caused by drought was larger in the managed than the abandoned grassland. The faster recovery of carbon dynamics from drought in the managed grassland was associated with a significantly higher uptake of nitrogen from soil. Furthermore, in both grasslands leaf nitrogen concentrations were enhanced after drought and likely reflected drought-induced increases in nitrogen availability. Our study shows that ongoing and future land-use changes have the potential to profoundly alter the impacts of climate extremes on grassland carbon dynamics.  相似文献   
996.
The addition of nutrients has been shown to decrease the species richness of plant communities. Herbivores feed on dominant plant species and should release subdominant species from competitive exclusion at high levels of nutrient availability with a severe competitive regime. Therefore, the effects of nutrients and invertebrate herbivory on the structure and diversity of plant communities should interact. To test this hypothesis, we used artificial plant communities in microcosms with different levels of productivity (applying fertilizer) and herbivory (adding different numbers of the snail, Cepaea hortensis, and the grasshopper, Chorthippus parallelus). For analyses, we assigned species to three functional groups: grasses, legumes and (non-leguminous) herbs. With the addition of nutrients aboveground biomass increased and species richness of plants decreased. Along the nutrient gradient, species composition shifted from a legume-dominated community to a community dominated by fast-growing annuals. But only legumes showed a consistent negative response to nutrients, while species of grasses and herbs showed idiosyncratic patterns. Herbivory had only minor effects, and bottom–up control was more important than top–down control. With increasing herbivory the biomass of the dominant plant species decreased and evenness increased. We found no interaction between nutrient availability and invertebrate herbivory. Again, species within functional groups showed no consistent responses to herbivory. Overall, the use of the functional groups grasses, legumes and non-leguminous herbs was of limited value to interpret the effects of nutrients and herbivory during our experiments.  相似文献   
997.
β-Glucan process-related impurities can be introduced into biopharmaceutical products via upstream or downstream processing or via excipients. This study obtained a comprehensive process-mapping dataset for five monoclonal antibodies to assess β-glucan introduction and clearance during development and production runs at various scales. Overall, 198 data points were available for analysis. The greatest β-glucan concentrations were found in the depth-filtration filtrate (37–2,745 pg/ml). Load volume correlated with β-glucan concentration in the filtrate, whereas flush volume was of secondary importance. Cation-exchange chromatography significantly cleared β-glucans. Furthermore, β-glucan leaching from the Planova 20N virus removal filter was reduced by increasing the flush volume (1 vs. 10 L/m2). β-glucan concentrations after filter flush with 10 L/m2 were consistently <10 pg/ml. No or only limited β-glucan clearance was attained via ultrafiltration/diafiltration (UF/DF). However, during the first run with monoclonal antibody (mAb) 4, β-glucan concentration in the UF/DF retentate was 10.8 pg/mg, potentially due to β-glucan leaching from the first run with a regenerated cellulose membrane. Overall, β-glucan levels in the final mAb drug substance were 1–12 pg/mg. Assuming high doses of 1,000–5,000 mg, a β-glucan contamination at 20 pg/mg would translate to 20–100 ng/dose, which is below the previously suggested threshold for product safety (≤500 ng/dose).  相似文献   
998.
999.
1000.
Mammalian ovarian follicular development is tightly regulated by crosstalk between cell death and survival signals, which include both endocrine and intra-ovarian regulators. Whether the follicle ultimately ovulates or undergoes atresia is dependent on the expression and actions of factors promoting follicular cell proliferation, differentiation or apoptosis. Prohibitin (PHB) is a highly conserved, ubiquitous protein that is abundantly expressed in granulosa cells (GCs) and associated with GC differentiation and apoptosis. The current study was designed to characterize the regulation of anti-apoptotic and pro-apoptotic factors in undifferentiated rat GCs (gonadotropin independent phase) governed by PHB. Microarray technology was initially employed to identify potential apoptosis-related genes, whose expression levels within GCs were altered by either staurosporine (STS) alone or STS in presence of ectopically over-expressed PHB. Next, immunoblot studies were performed to examine the expression patterns of selective Bcl-2 family members identified by the microarray analysis, which are commonly regulated in the intrinsic-apoptotic pathway. These studies were designed to measure protein levels of Bcl2 family in relation to expression of the acidic isoform (phosphorylated) PHB and the components of MEK-Erk1/2 pathway. These studies indicated that over-expression of PHB in undifferentiated GCs inhibit apoptosis which concomitantly results in an increased level of the anti-apoptotic proteins Bcl2 and Bclxl, reduced release of cytochrome c from mitochondria and inhibition of caspase-3 activity. In contrast, silencing of PHB expression resulted in change of mitochondrial morphology from the regular reticular network to a fragmented form, which enhanced sensitization of these GCs to the induction of apoptosis. Collectively, these studies have provided new insights on the PHB-mediated anti-apoptotic mechanism, which occurs in undifferentiated GCs through a PHB → Mek-Erk1/2 → Bcl/Bcl-xL pathway and may have important clinical implications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号