首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   11篇
  110篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   2篇
  2012年   5篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   6篇
  2007年   2篇
  2006年   5篇
  2005年   6篇
  2004年   6篇
  2003年   5篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   6篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1975年   2篇
  1974年   2篇
  1973年   4篇
  1970年   1篇
  1969年   2篇
  1961年   1篇
  1950年   1篇
  1925年   1篇
  1915年   1篇
排序方式: 共有110条查询结果,搜索用时 0 毫秒
81.
Protein expression level is one of the strongest predictors of protein sequence evolutionary rate, with high-expression protein sequences evolving at slower rates than low-expression protein sequences largely because of constraints on protein folding and function. Expression evolutionary rates also have been shown to be negatively correlated with expression level across human and mouse orthologs over relatively long divergence times (i.e., ∼100 million years). Long-term evolutionary patterns, however, often cannot be extrapolated to microevolutionary processes (and vice versa), and whether this relationship holds for traits evolving under directional selection within a single species over ecological timescales (i.e., <5000 years) is unknown and not necessarily expected. Expression is a metabolically costly process, and the expression level of a particular protein is predicted to be a tradeoff between the benefit of its function and the costs of its expression. Selection should drive the expression level of all proteins close to values that maximize fitness, particularly for high-expression proteins because of the increased energetic cost of production. Therefore, stabilizing selection may reduce the amount of standing expression variation for high-expression proteins, and in combination with physiological constraints that may place an upper bound on the range of beneficial expression variation, these constraints could severely limit the availability of beneficial expression variants. To determine whether rapid-expression evolution was restricted to low-expression proteins owing to these constraints on highly expressed proteins over ecological timescales, we compared venom protein expression levels across mainland and island populations for three species of pit vipers. We detected significant differentiation in protein expression levels in two of the three species and found that rapid-expression differentiation was restricted to low-expression proteins. Our results suggest that various constraints on high-expression proteins reduce the availability of beneficial expression variants relative to low-expression proteins, enabling low-expression proteins to evolve and potentially lead to more rapid adaptation.  相似文献   
82.
Purified chloroplast tRNAs were isolated fromPisum sativum leaves and radioactively labeled at their 3′ end using tRNA nucleotidyl transferase and α32P-labeled CTP. Pea ctDNA was fragmented using a number of restriction endonucleases and hybridized with thein vitro labeled chloroplast tRNAs by DNA transfer method. Genes for tRNAs have been found to be dispersed throughout the chloroplast genome. A closer analysis of the several hybrid regions using recombinant DNA plasmids have shown that tRNA genes are localized in the chloroplast genome in both single and multiple arrangements. Two dimensional gel electrophoresis of total ct tRNA have identified 36 spots. All of them have been found to hybridize withPisum sativum ctDNA. Using recombinant clones, 30 of the tRNA spots have been mapped inPisum sativum ctDNA.  相似文献   
83.
ABSTRACT. Many advances have been made in our knowledge of the biology of foraminifera over the past several decades. Fine structural, biophysical, and molecular biological studies have shown that the most prominent components of their distinctive bidirectional granuloreliculopods are bundles of micro tubules linked by crossbridges to each other, as well as to membrane-bound organelles and the plasma membrane. the microtubules ratchet past each other as dynein transduces the free energy of ATP to produce pseudopodal movements. In spite of the fact that there are over 40,000 described species of living and fossil species of foraminifera, there have been many recent exciting discoveries of new species and groups. New casting techniques are providing us with greater understanding of the complexities and functional aspects of form in the group. Significant advances are being made in understanding the distribution and energetics of deep-sea forms. Larger and planktonic foraminifera are the hosts for a particularly diverse range of endosymbiotic algae, including dinoflagellates, chlorophytes, unicellular rhodophytes, and diatoms. Chloroplast husbandry also occurs. Significant research effort has been expended yielding us considerable insight into various aspects of the endosymbiotic phenomenon. A unified conceptual framework has been drawn to help us understand the life cycle options found in foraminifera.  相似文献   
84.
Mutations which improve the efficiency of recombination should affect either the proteins which mediate recombination or their substrate, DNA itself. The former mutations would be localized to a few sites. The latter would be dispersed. Studies of hybridization between RNA molecules have suggested that recombination may be initiated by a homology search involving the "kissing" of the tips of stem loops. This predicts that, in the absence of other constraints, mutations which assist the formation of stem loops would be favored. From comparisons of the folding of normal and shuffled DNA sequences, I present evidence for an evolutionary selection pressure to distribute stem loops generally throughout genomes. I propose that this early pressure came into conflict with later local pressures to impose information concerning specific function. The conflict was accommodated by permitting sections of DNA concerned with a specific function to evolve in dispersed segments. Traces of the conflict seem to be present in some modern intron-containing genes. Thus, introns may have allowed the interspersing of selectively advantageous stem loops in coding regions of DNA.   相似文献   
85.
A quantitative assay was used to measure the rate of collection of a population of embryonic neural retina cells to the surface of cell aggregates. The rate of collection of freshly trysinized cells was limited in the initial stages by the rate of replacement of trypsin-sensitive cell- surface components. When cells were preincubated, or "recovered," and then added to cell aggregates, collection occurred at a linear rate and was independent of protein and glycoprotein synthesis. The adhesion of recovered cells was temperature and energy dependent, and was reversibly inhibited by cytochalasin B. Colchicine had little effect on collection of recovered cells. Antiserum directed against recovered cell membranes was shown to bind to recovered cells by indirect immunofluorescence. The antiserum also was shown to inhibit collection of recovered cells to aggregates, suggesting that at least some of the antigens identified might be involved in the adhesion process. The inhibitory effect of the antiserum was dose dependent . Freshly trypsinized cells absorbed neither the immunofluorescence activity nor the adhesion-inhibiting activity. Recovered cells absorbed away both activities. In specificity studies, dorsal neural retina cells adhered to aggregates of ventral optic tectum in preference to aggregates of dorsal optic tectum. The adhesive specificity of the dorsal retina cells was less sensitive to trypsin than the adhesive specificity of ventral retina cells which adhered preferentially to dorsal tectal aggregates only after a period of recovery.  相似文献   
86.
Reliable methods to quantify dynamic signaling changes across diverse pathways are needed to better understand the effects of disease and drug treatment in cells and tissues but are presently lacking. Here, we present SigPath, a targeted mass spectrometry (MS) assay that measures 284 phosphosites in 200 phosphoproteins of biological interest. SigPath probes a broad swath of signaling biology with high throughput and quantitative precision. We applied the assay to investigate changes in phospho‐signaling in drug‐treated cancer cell lines, breast cancer preclinical models, and human medulloblastoma tumors. In addition to validating previous findings, SigPath detected and quantified a large number of differentially regulated phosphosites newly associated with disease models and human tumors at baseline or with drug perturbation. Our results highlight the potential of SigPath to monitor phosphoproteomic signaling events and to nominate mechanistic hypotheses regarding oncogenesis, response, and resistance to therapy.  相似文献   
87.
Unilateral deafferentation induced by transection of the C(4)-C(8) dorsal roots of spinal cord, followed by a complex of abnormal self-mutilating behavior, is interpreted as an animal model of chronic nociception. The objective of our study was to test the differences in tail-flick latency between intact control and unilaterally deafferented animals and to assess the changes in their acute nociceptive sensation. The initial hypothesis was that deafferentation-induced painful sensation might cause stress-induced analgesia that should be manifested as prolonged tail-flick latency. The experiment was carried out on 11 male and 10 female adult Wistar rats. The tail-flick latency was repeatedly measured over a period of 10 consecutive weeks both in the preoperative baseline period and following multiple cervical dorsal rhizotomy. Contrary to our hypothesis, unilateral deafferentation was followed by a significant shortening of the tail-flick latency both in males and females. In deafferented animals, compared to the controls, variations of tail-flick latency were reduced. In individual animals after deafferentation, concurrent dynamic changes were observed in self-mutilating behavior, in a loss and regaining of body weight, and in tail-flick latency. Our data suggest that changes in tail-flick latency may be interpreted in terms of central sensitization and that tail-flick latency might be considered as a useful marker of chronic nociception.  相似文献   
88.

Background  

High dietary intake of selenium or soybean isoflavones reduces prostate cancer risk. These components each affect androgen-regulated gene expression. The objective of this work was to determine the combined effects of selenium and isoflavones on androgen-regulated gene expression in rat prostate.  相似文献   
89.
Enteral nutrition (EN) is a preferred way of feeding in critically ill patients unless obvious contraindications such as ileus or active gastrointestinal bleeding are present. Early enteral nutrition as compared to delayed EN or total parenteral nutrition decreases morbidity in postsurgical and trauma patients. The hepatosplanchnic region plays a pivotal role in the pathophysiology of sepsis and multiple organ dysfunction syndrome. The beneficial effects of EN on splanchnic perfusion and energy metabolism have been documented both in healthy volunteers and animal models of sepsis, hemorrhagic shock and burns. By contrast, EN may increase splanchnic metabolic demands, which in turn may lead to oxygen and/or energy demand/supply mismatch, especially when hyperemic response to EN is not preserved. Therefore, the timing of initiation and the dose of EN in patients with circulatory failure requiring vasoactive drugs are a matter of controversy. Interestingly, the results of recent clinical studies suggest that early enteral nutrition may not be harmful even in patients with circulatory compromise. Nevertheless, possible onset of serious complications, the non-occlusive bowel necrosis in particular, have to be kept in mind. Unfortunately, there is only a limited number of clinically applicable monitoring tools for the effects of enteral nutrition in critically ill patients.  相似文献   
90.
Locally secreted cytokines of both the embryonic and the endometrial origin control the implantation process. The defects in their signaling that lead to unfavorable environment within the uterus may cause embryo implantation failure. The leukemia inhibitory factor (LIF), interleukin-11 (IL-11) as well as IL-12/IL-15/IL-18 system are regarded to be important signaling vectors. LIF plays an essential role in the preimplantation embryo development and the blastocyst implantation and its gene mutations in women contribute to the implantation failure and subsequent infertility. IL-11 signaling has been shown to be required for the uterine decidualization response as well as for the hatching and attachment of blastocysts. The IL-12/IL-15/IL-18 system interacts with endometrial leukocytes, particularly with NK cells, and influences directly the local angiogenesis and tissue remodeling. Differences in the levels of endometrial leukocytic subpopulations and in the patterns of intra-uterine cytokine concentrations that are observed between fertile and infertile women contribute to infertility probably by affecting the embryonic maternal dialogue during the implantation and early placentation period. Focusing on this cross talk promises to open new era in assisted reproduction techniques that will be based on diagnostics of missing signaling molecules and impairments of uterine receptivity as well as on therapeutic applications of individualized embryo culture and transfer media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号