首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1567篇
  免费   122篇
  国内免费   1篇
  1690篇
  2024年   3篇
  2023年   10篇
  2022年   45篇
  2021年   66篇
  2020年   36篇
  2019年   46篇
  2018年   72篇
  2017年   57篇
  2016年   80篇
  2015年   101篇
  2014年   98篇
  2013年   113篇
  2012年   138篇
  2011年   136篇
  2010年   79篇
  2009年   69篇
  2008年   71篇
  2007年   91篇
  2006年   93篇
  2005年   81篇
  2004年   59篇
  2003年   42篇
  2002年   43篇
  2001年   4篇
  2000年   6篇
  1999年   2篇
  1998年   8篇
  1997年   5篇
  1995年   10篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
排序方式: 共有1690条查询结果,搜索用时 15 毫秒
991.
Sulforaphane (SFN) is a compound derived from cruciferous plants. Its anticancer properties have been demonstrated both, in cancer cell lines as well as tumors in animal models. It has been shown that SFN inhibits cell proliferation, induces apoptosis, autophagy, and sensitizes cancer cells to therapies. As induction of catabolic processes is often related to perturbation in protein synthesis we aimed to investigate the impact of SFN on this process in PC-3 human prostate cancer cells. In the present study we show that SFN inhibits protein synthesis in PC-3 cells in a dose- and time-dependent manner which is accompanied by a decreased phosphorylation of mTOR substrates. Translation inhibition is independent of mitochondria-derived ROS as it is observed in PC-3 derivatives devoid of functional mitochondrial respiratory chain (Rho0 cells). Although SFN affects mitochondria and slightly decreases glycolysis, the ATP level is maintained on the level characteristic for control cells. Inhibition of protein synthesis might be a protective response of prostate cancer cells to save energy. However, translation inhibition contributes to the death of PC-3 cells due to decreased level of a short-lived protein, survivin. Overexpression of this anti-apoptotic factor protects PC-3 cells against SFN cytotoxicity. Protein synthesis inhibition by SFN is not restricted to prostate cancer cells as we observed similar effect in SKBR-3 breast cancer cell line.  相似文献   
992.
993.
How organisms integrate metabolism with the external environment is a central question in biology. Here, we describe a novel regulatory small molecule, a proteogenic dipeptide Tyr‐Asp, which improves plant tolerance to oxidative stress by directly interfering with glucose metabolism. Specifically, Tyr‐Asp inhibits the activity of a key glycolytic enzyme, glyceraldehyde 3‐phosphate dehydrogenase (GAPC), and redirects glucose toward pentose phosphate pathway (PPP) and NADPH production. In line with the metabolic data, Tyr‐Asp supplementation improved the growth performance of both Arabidopsis and tobacco seedlings subjected to oxidative stress conditions. Moreover, inhibition of Arabidopsis phosphoenolpyruvate carboxykinase (PEPCK) activity by a group of branched‐chain amino acid‐containing dipeptides, but not by Tyr‐Asp, points to a multisite regulation of glycolytic/gluconeogenic pathway by dipeptides. In summary, our results open the intriguing possibility that proteogenic dipeptides act as evolutionarily conserved small‐molecule regulators at the nexus of stress, protein degradation, and metabolism.  相似文献   
994.
Glucocorticoid hormone receptor exists in the cytoplasm of target cells in the form of dynamic multiprotein heterocomplexes with heat shock proteins Hsp90 and Hsp70, and additional components of the molecular chaperone machinery. Whole body hyperthermic stress was previously shown to induce alterations in protein composition of these complexes increasing the share of Hsp70, but participation of individual Hsp70 family members was not investigated. In the present study the association of glucocorticoid receptor with constitutive and inducible forms of Hsp70 in the liver cytosol of rats exposed to 41 degrees C whole body hyperthermic stress was examined. Immunoprecipitation of glucocorticoid receptor heterocomplexes by monoclonal anti-receptor antibody (BuGR2) followed by quantitative immunoblotting revealed the presence of both nucleocytoplasmic Hsp70 family members, constitutive--Hsc70 and inducible--Hsp72, within the complexes. Immediately after the stress only Hsc70 was found in association with glucocorticoid receptor. However, after the induction of Hsp72 by stress, its appearance within the glucocorticoid receptor heterocomplexes was also recorded and the presence of both Hsp70 forms within the heterocomplexes was evident by the end of examined 24h period after the stress. This study confirms that heat stress affects protein composition of rat liver glucocorticoid receptor heterocomplexes increasing the share of Hsp70 and shows that this increase could be equally ascribed to constitutive and inducible forms of Hsp70.  相似文献   
995.
Homologues of CgtA, the common GTP-binding protein of Vibrio harveyi, are present in diverse organisms ranging from bacteria to humans. In bacteria, proteins homologous to CgtA form a subfamily of small GTP-binding proteins, called Obg/Gtp1. Similarity between bacterial members of this subfamily and their eukaryotic homologues is as high as about 50%. Nevertheless, specific functions of these proteins remain largely unknown. Genes coding for CgtA-like proteins are essential in almost all species of bacteria. The only known exception is V. harveyi, whose cells survive disruption of the cgtA gene. Therefore, the V. harveyi cgtA insertional mutant is a very useful tool for studies on functions of CgtA. Here we demonstrate that under normal growth conditions, cells of the cgtA mutant are slightly larger than wild-type cells, whereas indirect inhibition of DNA replication initiation by addition of rifampicin results in significantly higher differences in average cell size between these two strains as measured by flow cytometry. These differences decreased when cell division was inhibited by cephalexin. DNA synthesis per cell mass was found to be increased in the cgtA mutant relative to wild-type V. harveyi strain, whereas the mutant cells grew slower than bacteria with functional cgtA gene. Kinetics of DNA replication after inhibition of cell division was also considerably different in wild-type and cgtA mutant strains. These results suggest that the cgtA gene product plays a role in coupling of DNA replication to cell growth and cell division.  相似文献   
996.
997.
Nucleotide-binding and oligomerization domain (NOD)-like receptors constitute a first line of defense against invading bacteria. X-linked Inhibitor of Apoptosis (XIAP) is implicated in the control of bacterial infections, and mutations in XIAP are causally linked to immunodeficiency in X-linked lymphoproliferative syndrome type-2 (XLP-2). Here, we demonstrate that the RING domain of XIAP is essential for NOD2 signaling and that XIAP contributes to exacerbation of inflammation-induced hepatitis in experimental mice. We find that XIAP ubiquitylates RIPK2 and recruits the linear ubiquitin chain assembly complex (LUBAC) to NOD2. We further show that LUBAC activity is required for efficient NF-κB activation and secretion of proinflammatory cytokines after NOD2 stimulation. Remarkably, XLP-2-derived XIAP variants have impaired ubiquitin ligase activity, fail to ubiquitylate RIPK2, and cannot facilitate NOD2 signaling. We conclude that XIAP and LUBAC constitute essential ubiquitin ligases in NOD2-mediated inflammatory signaling and propose that deregulation of NOD2 signaling contributes to XLP-2 pathogenesis.  相似文献   
998.
999.
The aim of this study was to understand: (1) how environmental conditions can contribute to formation of Microcystis-dominated blooms in lowland, dam reservoirs in temperate climate—with the use of quantitative molecular monitoring, and (2) what is the role of toxic Microcystis genotypes in the bloom functioning. Monitoring of the Sulejow Reservoir in 2009 and 2010 in two sites Tresta (TR) and Bronislawow BR), which have different morphometry, showed that physicochemical conditions were always favorable for cyanobacterial bloom formation. In 2009, the average biomass of cyanobacteria reached 13 mg L?1 (TR) and 8 mg L?1 (BR), and in the second year, it decreased to approximately 1 mg L?1 (TR and BR). In turns, the mean number of toxic Microcystis genotypes in the total Microcystis reached 1 % in 2009, both in TR and BR, and in 2010, the number increased to 70 % in TR and 14 % in BR. Despite significant differences in the biomass of cyanobacteria in 2009 and 2010, the mean microcystins (MCs) concentration and toxicity stayed at a similar level of approximately 1 μg L?1. Statistical analysis indicated that water retention time was a factor that provided a significant difference between the two monitoring seasons and was considered a driver of the changes occurring in the Sulejow Reservoir. Hydrologic differences, which occurred between two studied years due to heavy flooding in Poland in 2010, influenced the decrease in number of Microcystis biomass by causing water disturbances and by lowering water temperature. Statistical analysis showed that Microcystis aeruginosa biomass and 16S rRNA gene copy number representing Microcystis genotypes in both years of monitoring could be predicted on the basis of total and dissolved phosphorus concentrations and water temperature. In present study, the number of mcyA gene copies representing toxic Microcystis genotypes could be predicted based on the biomass of M. aeruginosa. Moreover, MCs toxicity and concentration could be predicted on the basic of mcyA gene copy number and M. aeruginosa (biomass, 16S rRNA), respectively. Present findings may indicate that Microcystis can regulate the number of toxic genotypes, and in this way adjust the whole bloom to be able to produce MCs at the level which is necessary for its maintenance in the Sulejow Reservoir under stressful hydrological conditions.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号