首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1566篇
  免费   121篇
  国内免费   1篇
  2024年   2篇
  2023年   9篇
  2022年   45篇
  2021年   66篇
  2020年   36篇
  2019年   46篇
  2018年   72篇
  2017年   57篇
  2016年   80篇
  2015年   101篇
  2014年   98篇
  2013年   113篇
  2012年   138篇
  2011年   136篇
  2010年   79篇
  2009年   69篇
  2008年   71篇
  2007年   91篇
  2006年   93篇
  2005年   81篇
  2004年   59篇
  2003年   42篇
  2002年   43篇
  2001年   4篇
  2000年   6篇
  1999年   2篇
  1998年   8篇
  1997年   5篇
  1995年   10篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
排序方式: 共有1688条查询结果,搜索用时 31 毫秒
121.
alpha-Dystroglycan (alpha-DG) is an important cellular receptor for extracellular matrix (ECM) proteins as well as the Old World arenaviruses lymphocytic choriomeningitis virus (LCMV) and the human pathogenic Lassa fever virus (LFV). Specific O-glycosylation of alpha-DG is critical for its function as receptor for ECM proteins and arenaviruses. Here, we investigated the impact of arenavirus infection on alpha-DG expression. Infection with an immunosuppressive LCMV isolate caused a marked reduction in expression of functional alpha-DG without affecting biosynthesis of DG core protein or global cell surface glycoprotein expression. The effect was caused by the viral glycoprotein (GP), and it critically depended on alpha-DG binding affinity and GP maturation. An equivalent effect was observed with LFVGP. Viral GP was found to associate with a complex between DG and the glycosyltransferase LARGE in the Golgi. Overexpression of LARGE restored functional alpha-DG expression in infected cells. We provide evidence that virus-induced down-modulation of functional alpha-DG perturbs DG-mediated assembly of laminin at the cell surface, affecting normal cell-matrix interactions.  相似文献   
122.
Transferrins, found in invertebrates and vertebrates, form a physiologically important family of proteins playing a major role in iron acquisition and transport, defense against microbial pathogens, growth and differentiation. These proteins are bilobal in structure and each lobe is composed of two domains divided by a cleft harboring an iron atom. Vertebrate transferrins comprise of serotransferrins, lactoferrins and ovotransferrins. In mammals serotransferrins transport iron in physiological fluids and deliver it to cells, while lactoferrins scavenge iron, limiting its availability to invading microbes. In oviparous vertebrates there is only one transferrin gene, expressed either in the liver to be delivered to physiological fluids as serotransferrin, or in the oviduct with a final localization in egg white as ovotransferrin. Being products of one gene sero- and ovotransferrin are identical at the amino-acid sequence level but with different, cell specific glycosylation patterns. Our knowledge of the mechanisms of transferrin iron binding and release is based on sequence and structural data obtained for human serotransferrin and hen and duck ovotransferrins. No sequence information about other ovotransferrins was available until our recent publication of turkey, ostrich, and red-eared turtle (TtrF) ovotransferrin mRNA sequences [Ciuraszkiewicz, J., Olczak, M., Watorek, W., 2006. Isolation, cloning and sequencing of transferrins from red-eared turtle, African ostrich and turkey. Comp. Biochem. Physiol. 143 B, 301-310]. In the present paper, ten new reptilian mRNA transferrin sequences obtained from the Nile crocodile (NtrF), bearded dragon (BtrF), Cuban brown anole (AtrF), veiled and Mediterranean chameleons (VtrF and KtrF), sand lizard (StrF), leopard gecko (LtrF), Burmese python (PtrF), African house snake (HtrF), and grass snake (GtrF) are presented and analyzed. Nile crocodile and red-eared turtle transferrins have a disulphide bridge pattern identical to known bird homologues. A partially different disulphide bridge pattern was found in the Squamata (snakes and lizards). The possibility of a unique interdomain disulphide bridge was predicted for LtrF. Differences were found in iron-binding centers from those of previously known transferrins. Substitutions were found in the iron-chelating residues of StrF and TtrF and in the synergistic anion-binding residues of NtrF. In snakes, the transferrin (PtrF, HtrF and GtrF) N-lobe "dilysine trigger" occurring in all other known transferrins was not found, which indicates a different mechanism of iron release.  相似文献   
123.
124.
125.
In most ectotherms, compared with development at low temperatures, development at high temperatures results in the acceleration of maturation, which in turn results in a smaller size (temperature–size rule, TSR). It is not known at which developmental stages this thermal response is determined. We exposed different life stages of the rotifer Lecane inermis to 15, 20, or 25 °C to determine whether the TSR in the F1 generation is governed by the thermal conditions experienced by the mothers (F0 generation) during their development, during egg production, or during the development of the eggs or hatchlings. We found that the adult size was affected by the thermal conditions experienced by the mothers and embryos, but not by the conditions during post-hatching growth. We suggest that the thermal plasticity producing the TSR in rotifers may reflect the joint impacts of a maternal effect and a direct effect of the environment during egg development. The two-point control of the TSR resembles the thermal determination of other biological phenomena, similar to the thermally determined sex determination in ectotherms. Our results contribute not only to better understanding the proximate mechanisms of TSR, but also to comprehending the general biological mechanisms of response to temperature, which is one of the most important ecological factors.  相似文献   
126.
127.
128.
Serum amyloid A (SAA) is a multifunctional acute‐phase protein whose concentration in serum increases markedly following a number of chronic inflammatory and neoplastic diseases. Prolonged high SAA level may give rise to reactive systemic amyloid A (AA) amyloidosis, where the N‐terminal segment of SAA is deposited as amyloid fibrils. Besides, recently, well‐documented association of SAA with high‐density lipoprotein or glycosaminoglycans, in particular heparin/heparin sulfate (HS), and specific interaction between SAA and human cystatin C (hCC), the ubiquitous inhibitor of cysteine proteases, was proved. Using a combination of selective proteolytic excision and high‐resolution mass spectrometry, a hCC binding site in the SAA sequence was determined as SAA(86–104). The role of this SAA C‐terminal fragment as a ligand‐binding locus is still not clear. It was postulated important in native SAA folding and in pathogenesis of AA amyloidosis. In the search of conformational details of this SAA fragment, we did its structure and affinity studies, including its selected double/triple Pro→Ala variants. Our results clearly show that the SAA(86–104) 19‐peptide has rather unordered structure with bends in its C‐terminal part, which is consistent with the previous results relating to the whole protein. The results of affinity chromatography, fluorescent ELISA‐like test, CD and NMR studies point to an importance of proline residues on structure of SAA(86–104). Conformational details of SAA fragment, responsible for hCC binding, may help to understand the objective of hCC–SAA complex formation and its importance for pathogenesis of reactive amyloid A amyloidosis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
129.
130.
Vibrio cholerae is autochthonous to various aquatic niches and is the etiological agent of the life-threatening diarrheal disease cholera. The persistence of V. cholerae in natural habitats is a crucial factor in the epidemiology of cholera. In contrast to the well-studied V. cholerae-chitin connection, scarce information is available about the factors employed by the bacteria for the interaction with collagens. Collagens might serve as biologically relevant substrates, because they are the most abundant protein constituents of metazoan tissues and V. cholerae has been identified in association with invertebrate and vertebrate marine animals, as well as in a benthic zone of the ocean where organic matter, including collagens, accumulates. Here, we describe the characterization of the V. cholerae putative collagenase, VchC, encoded by open reading frame VC1650 and belonging to the subfamily M9A peptidases. Our studies demonstrate that VchC is an extracellular collagenase degrading native type I collagen of fish and mammalian origin. Alteration of the predicted catalytic residues coordinating zinc ions completely abolished the protein enzymatic activity but did not affect the translocation of the protease by the type II secretion pathway into the extracellular milieu. We also show that the protease undergoes a maturation process with the aid of a secreted factor(s). Finally, we propose that V. cholerae is a collagenovorous bacterium, as it is able to utilize collagen as a sole nutrient source. This study initiates new lines of investigations aiming to uncover the structural and functional components of the V. cholerae collagen utilization program.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号