首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1273篇
  免费   116篇
  2023年   8篇
  2022年   13篇
  2021年   29篇
  2020年   12篇
  2019年   27篇
  2018年   26篇
  2017年   38篇
  2016年   35篇
  2015年   53篇
  2014年   61篇
  2013年   79篇
  2012年   96篇
  2011年   72篇
  2010年   41篇
  2009年   36篇
  2008年   49篇
  2007年   60篇
  2006年   56篇
  2005年   47篇
  2004年   63篇
  2003年   38篇
  2002年   48篇
  2001年   46篇
  2000年   31篇
  1999年   32篇
  1998年   10篇
  1997年   12篇
  1996年   9篇
  1995年   14篇
  1994年   12篇
  1993年   8篇
  1992年   24篇
  1991年   14篇
  1990年   16篇
  1989年   13篇
  1988年   11篇
  1987年   11篇
  1986年   15篇
  1985年   14篇
  1984年   15篇
  1983年   11篇
  1982年   11篇
  1979年   5篇
  1975年   7篇
  1973年   10篇
  1972年   6篇
  1971年   7篇
  1970年   5篇
  1969年   7篇
  1968年   6篇
排序方式: 共有1389条查询结果,搜索用时 125 毫秒
991.
992.
The nucleolus organizer region (NOR) and 5S ribosomal RNA (rRNA) genes are valuable as chromosome landmarks and in evolutionary studies. The NOR intergenic spacers (IGS) and 5S rRNA nontranscribed spacers (NTS) were PCR-amplified and sequenced from 5 cultivars of the Andean grain crop quinoa (Chenopodium quinoa Willd., 2n = 4x = 36) and a related wild ancestor (C. berlandieri Moq. subsp. zschackei (Murr) A. Zobel, 2n = 4x = 36). Length heterogeneity observed in the IGS resulted from copy number difference in subrepeat elements, small re arrangements, and species-specific indels, though the general sequence composition of the 2 species was highly similar. Fifteen of the 41 sequence polymorphisms identified among the C. quinoa lines were synapomorphic and clearly differentiated the highland and lowland ecotypes. Analysis of the NTS sequences revealed 2 basic NTS sequence classes that likely originated from the 2 allopolyploid subgenomes of C. quinoa. Fluorescence in situ hybridization (FISH) analysis showed that C. quinoa possesses an interstitial and a terminal pair of 5S rRNA loci and only 1 pair of NOR, suggesting a reduction in the number of rRNA loci during the evolution of this species. C. berlandieri exhibited variation in both NOR and 5S rRNA loci without changes in ploidy.  相似文献   
993.
Cerrophidion (Bothrops) godmani myotoxins I (CGMT-I) and II (CGMT-II), Asp-49 and Lys-49 phospholipases A(2) (PLA2s), which drastically differ in enzymatic activity, were devoid of direct hemolytic effects on erythrocytes (RBC) from different species despite the fact that enzymatically active CGMT-I was able to hydrolyze RBC membrane phospholipids and disrupt liposomes prepared from RBC lipids. Human RBC did not become susceptible to the toxins after treatment with neuraminidase or after altering membrane fluidity with cholesterol or sublytic concentrations of detergent. Unlike normal RBC, significant hemolysis was induced by CGMT-II and another similar Lys-49 isoform, B. asper MT-II (BAMT-II), in RBC enriched with phosphatidylserine (PS). Hemolysis was greater in RBC preincubated with pyridyldithioethylamine (PDA), a potent inhibitor of aminophospholipid transport. RBC enriched with phosphatidic acid (PA) also became susceptible to the myotoxins but was unaffected by PDA. Cells enriched with phosphatidylcholine (PC) remained resistant to the action of the toxins. BAMT-II also induced damage in black lipid membranes prepared with PS but not PC alone. When RBC binding of BAMT-II was measured by enzyme-linked immunosorbent assay, it was observed that PS- and PA-enriched erythrocytes were always able to capture more toxin than normal and PC-enriched RBC. This effect was significantly improved by PDA (in the case of PS) and it was observed either in the presence or in the absence of calcium in the medium. These data suggest that negatively charged lipids in the outer leaflet of cell membranes constitute myotoxic PLA2 binding sites. The scarcity of anionic phospholipids in the outer leaflet of RBC could explain their resistance to the action of these PLA2s.  相似文献   
994.
995.
Papilla formation on colonies of two isopolyauxotrophic strains (ade 2 his3 leu2 trp1 ura3) allelic inRAD6 was compared in order to find proper conditions for selecting mutants ofSaccharomyces cerevisiae with altered starvation-induced mutability. The most promising for this purpose appeared to be culturing low numbers of colonies on suboptimal plates with a growth-limiting amount of adenine at 28 °C for 20 d. Inactivation of theRAD6 gene which suppresses the level of starvation-associated mutagenesis markedly enhanced papilla formation under these conditions. Formation of almost all papillae on 20-d-old colonies of BJC3 was caused by mutation. Most of the papillae (75%) were white Ade+ revertants. Three groups of these papillae were distinguished (Ade+, Ade+ Rad6+ and Ade+ Trp+). Both, Ade+ Rad6+ and Ade+ Trp+ double reversions were very probably caused by a suppressor mutation. The less frequent red papillae had the same auxotrophic markers and UV sensitivity as BJC3 but their outgrowth in liquid media was greater. It appears that creation of these papillae is caused by mutation affecting the cell response to growth limitation by low concenttations of adenine.  相似文献   
996.
Left ventricular hypertrophy (LVH), a risk factor for cardiovascular morbidity and mortality, is commonly caused by essential hypertension. Three geometric patterns of LVH can be induced by hypertension: concentric remodeling, concentric hypertrophy, and eccentric hypertrophy. Clinical studies suggest that different underlying etiologies, genetic modifiers, and risk of mortality are associated with LVH geometric patterns. Since pressure overload-induced LVH can be modeled experimentally using transverse aortic constriction (TAC) and since C57BL/6J (B6) and 129S1/SvImJ (129S1) strains, which have different baseline cardiovascular phenotypes, are commonly used, we conducted serial echocardiographic studies to assess cardiac function up to 8 wk of post-TAC in male B6, 129S1, and B6129F1 (F1) mice. B6 mice had an earlier onset and more pronounced impairment in contractile function, with corresponding left and right ventricular dilatation, fibrosis, change in expression of hypertrophy marker, and increased liver weights at 5 wk of post-TAC. These observations suggest that B6 mice had eccentric hypertrophy with systolic dysfunction and right-sided heart failure. In contrast, we found that 129S1 and F1 mice delayed transition to decompensated heart failure, with 129S1 mice exhibiting preserved systolic function until 8 wk of post-TAC and relatively mild alterations in histology and markers of hypertrophy at 5 wk post-TAC. Consistent with concentric hypertrophy, our results show that these strains manifest different cardiac responses to pressure overload in a time-dependent manner and that genetic susceptibility to initial concentric hypertrophy is dominant to eccentric hypertrophy. These results also imply that genetic background differences can complicate interpretation of TAC studies when using mixed genetic backgrounds.  相似文献   
997.
Cyclopentenone prostanoids (cyP) arise as important modulators of inflammation and cell proliferation. Although their physiological significance has not been fully elucidated, their potent biological effects have spurred their study as leads for the development of therapeutic agents. A key determinant of cyP action is their ability to bind to thiol groups in proteins or in glutathione through Michael addition. Even though several protein targets for cyP addition have been identified, little is known about the structural determinants from the protein or the cyP that drive this modification. The results herein presented provide the first evidence that cyP with different structures target distinct thiol sites in a protein molecule, namely, H-Ras. Whereas 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) and Delta12-PGJ2 preferentially target the C-terminal region containing cysteines 181 and 184, PGA1 and 8-iso-PGA1 bind mainly to cysteine 118, located in the GTP-binding motif. The biological counterparts of this specificity are the site-selective modification and activation of H-Ras in cells and the differential interaction of cyP with H, N, and K-Ras proteins. Cysteine 184 is unique to H-Ras, whereas cysteine 118 is present in the three Ras homologues. Consistent with this, PGA1 binds to and activates H-, N-, and K-Ras, thus differing from the preferential interaction of 15d-PGJ2 with H-Ras. These results put forward the possibility of influencing the selectivity of cyP-protein addition by modifying cyP structure. Furthermore, they may open new avenues for the development of cyP-based drugs.  相似文献   
998.
ATP-sensitive K(+) (K(ATP)) channels are gated by intracellular ATP, proton and phospholipids. The pore-forming Kir6.2 subunit has all essential machineries for channel gating by these ligands. It is known that channel gating involves the inner helix bundle of crossing in which a phenylalanine residue (Phe168) is found in the TM2 at the narrowest region of the ion-conduction pathway in the Kir6.2. Here we present evidence that Phe168-Kir6.2 functions as an ATP- and proton-activated gate via steric hindrance and hydrophobic interactions. Site-specific mutations of Phe168 to a small amino acid resulted in losses of the ATP- and proton-dependent gating, whereas the channel gating was well maintained after mutation to a bulky tryptophan, supporting the steric hindrance effect. The steric hindrance effect, though necessary, was insufficient for the gating, as mutating Phe168 to a bulky hydrophilic residue severely compromised the channel gating. Single-channel kinetics of the F168W mutant resembled the wild-type channel. Small residues increased P(open), and displayed long-lasting closures and long-lasting openings. Kinetic modeling showed that these resulted from stabilization of the channel to open and long-lived closed states, suggesting that a bulky and hydrophobic residue may lower the energy barrier for the switch between channel openings and closures. Thus, it is likely that the Phe168 acts as not only a steric hindrance gate but also potentially a facilitator of gating transitions in the Kir6.2 channel.  相似文献   
999.
Heteromultimerization of Kir4.1 and Kir5.1 leads to a channel with distinct functional properties. The heteromeric Kir4.1-Kir5.1 channel is expressed in the eye, kidney and brainstem and has CO(2)/pH sensitivity in the physiological range, suggesting a candidate molecule for the regulation of K(+) homeostasis and central CO(2) chemoreception. It is known that K(+) transport in renal epithelium and brainstem CO(2) chemosensitivity are subject to modulation by hormones and neurotransmitters that activate distinct intracellular signaling pathways. If the Kir4.1-Kir5.1 channel is involved in pH-dependent regulation of cellular functions, it may also be regulated by some of the intracellular signaling systems. Therefore, we undertook studies to determine whether PKC modulates the heteromeric Kir4.1-Kir5.1 channel. The channel expressed using a Kir4.1-Kir5.1 tandem dimer construct was inhibited by the PKC activator PMA in a dose-dependent manner. The channel inhibition was produced via reduction of the P(open). The effect of PMA was abolished by specific PKC inhibitors. In contrast, exposure of oocytes to forskolin (a PKA activator) had no significant effect on Kir4.1-Kir5.1 currents. The channel inhibition appeared to be independent of PIP(2) depletion and PKC-dependent internalization. Several consensus sequences of potential PKC phosphorylation sites were identified in the Kir4.1 and Kir5.1 subunits by sequence scan. Although the C-terminal peptides of both Kir4.1 and Kir5.1 were phosphorylated in vitro, site-directed mutagenesis of individual residues failed to reveal the PKC phosphorylation sites suggesting that the channel may have multiple phosphorylation sites. Taken together, these results suggest that the Kir4.1-Kir5.1 but not the homomeric Kir4.1 channel is strongly inhibited by PKC activation.  相似文献   
1000.
Recent studies have documented the importance of Niemann-Pick C1-like 1 protein (NPC1L1), a putative physiological target of the drug ezetimibe, in mediating intestinal cholesterol absorption. However, whether NPC1L1 is the high affinity cholesterol binding protein on intestinal brush border membranes is still controversial. In this study, brush border membrane vesicles (BBMV) from wild type and NPC1L1-/- mice were isolated and assayed for micellar cholesterol binding in the presence or absence of ezetimibe. Results confirmed the loss of the high affinity component of cholesterol binding when wild type BBMV preparations were incubated with antiserum against the class B type 1 scavenger receptor (SR-BI) in the reaction mixture similar to previous studies. Subsequently, second order binding of cholesterol was observed with BBMV from wild type and NPC1L1-/- mice. The inclusion of ezetimibe in these in vitro reaction assays resulted in the loss of the high affinity component of cholesterol interaction. Surprisingly, BBMVs from NPC1L1-/- mice maintained active binding of cholesterol. These results documented that SR-BI, not NPC1L1, is the major protein responsible for the initial high affinity cholesterol ligand binding process in the cholesterol absorption pathway. Additionally, ezetimibe may inhibit BBM cholesterol binding through targets such as SR-BI in addition to its inhibition of NPC1L1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号