首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   5篇
  2021年   10篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   6篇
  2014年   10篇
  2013年   9篇
  2012年   24篇
  2011年   12篇
  2010年   8篇
  2009年   2篇
  2008年   3篇
  2007年   12篇
  2006年   9篇
  2005年   4篇
  2004年   7篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1977年   1篇
  1974年   2篇
  1923年   1篇
排序方式: 共有163条查询结果,搜索用时 78 毫秒
161.
Herbivorous fishes form a keystone component of reef ecosystems, yet the functional mechanisms underlying their feeding performance are poorly understood. In water, gravity is counter-balanced by buoyancy, hence fish are recoiled backwards after every bite they take from the substrate. To overcome this recoil and maintain contact with the algae covered substrate, fish need to generate thrust while feeding. However, the locomotory performance of reef herbivores in the context of feeding has hitherto been ignored. We used a three-dimensional high-speed video system to track mouth and body kinematics during in situ feeding strikes of fishes in the genus Zebrasoma, while synchronously recording the forces exerted on the substrate. These herbivores committed stereotypic and coordinated body and fin movements when feeding off the substrate and these movements determined algal biomass removed. Specifically, the speed of rapidly backing away from the substrate was associated with the magnitude of the pull force and the biomass of algae removed from the substrate per feeding bout. Our new framework for measuring biting performance in situ demonstrates that coordinated movements of the body and fins play a crucial role in herbivore foraging performance and may explain major axes of body and fin shape diversification across reef herbivore guilds.  相似文献   
162.
Oxygen consumption [(VO2) in ml.kg-1.min-1], blood lactate concentration ([La] in mM) and dynamic friction of the skis on snow [(F) in N] were measured in six athletes skiing on a level track at different speeds [(v) in m.min-1] and using different methods of propulsion. The VO2 increased with v and F, the latter depending mostly on snow temperature, as did [La]. The VO2 was very much affected by the skiing technique. Multiple regression equations gave the following results: with diagonal stride (DS), VO2 = -23.09 + 0.189 v + 0.62 N; with double pole (DP), VO2 = -30.95 + 0.192 v + 0.51 N; and with the new skating technique (S), VO2 = -32.63 + 0.171 + 0.68 N. In terms of VO2 DS is the most expensive technique, while S is the least expensive; however, as F increases, S, at the highest speed, tends to cost as much as DP. At speeds from 18 to 22 km.h-1, the speeds measured in the competitions, the F for DS and DP can represent from 10% to 50% of the energy expenditure, with F ranging from 10 to 60 N; with S this range increases to 20%-70%. This seems to depend on the interface between the skis and the snow and on the different ways the poles are used.  相似文献   
163.
Using small-angle X-ray scattering, we determined the three-dimensional packing architecture of the minichromosome confined within the SV40 virus. In solution, the minichromosome, composed of closed circular dsDNA complexed in nucleosomes, was shown to be structurally similar to cellular chromatin. In contrast, we find a unique organization of the nanometrically encapsidated chromatin, whereby minichromosomal density is somewhat higher at the center of the capsid and decreases towards the walls. This organization is in excellent agreement with a coarse-grained computer model, accounting for tethered nucleosomal interactions under viral capsid confinement. With analogy to confined liquid crystals, but contrary to the solenoid structure of cellular chromatin, our simulations indicate that the nucleosomes within the capsid lack orientational order. Nucleosomes in the layer adjacent to the capsid wall, however, align with the boundary, thereby inducing a ‘molten droplet’ state of the chromatin. These findings indicate that nucleosomal interactions suffice to predict the genome organization in polyomavirus capsids and underscore the adaptable nature of the eukaryotic chromatin architecture to nanoscale confinement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号