首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   855篇
  免费   54篇
  909篇
  2024年   3篇
  2023年   12篇
  2022年   22篇
  2021年   34篇
  2020年   16篇
  2019年   30篇
  2018年   29篇
  2017年   22篇
  2016年   37篇
  2015年   36篇
  2014年   54篇
  2013年   64篇
  2012年   69篇
  2011年   76篇
  2010年   42篇
  2009年   25篇
  2008年   48篇
  2007年   40篇
  2006年   48篇
  2005年   34篇
  2004年   27篇
  2003年   16篇
  2002年   23篇
  2001年   10篇
  2000年   12篇
  1999年   8篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1992年   2篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   7篇
  1986年   5篇
  1985年   2篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1974年   6篇
  1973年   3篇
  1971年   1篇
  1969年   2篇
  1965年   3篇
  1961年   1篇
  1959年   1篇
  1936年   1篇
排序方式: 共有909条查询结果,搜索用时 15 毫秒
161.
162.
Maturity onset diabetes of the young (MODY) is an autosomal dominant disease. Despite extensive research, the mechanism by which a mutant MODY gene results in monogenic diabetes is not yet clear due to the inaccessibility of patient samples. Induced pluripotency and directed differentiation toward the pancreatic lineage are now viable and attractive methods to uncover the molecular mechanisms underlying MODY. Here we report, for the first time, the derivation of human induced pluripotent stem cells (hiPSCs) from patients with five types of MODY: MODY1 (HNF4A), MODY2 (GCK), MODY3 (HNF1A), MODY5 (HNF1B), and MODY8 (CEL) with a polycistronic lentiviral vector expressing a Cre-excisable human “stem cell cassette” containing the four reprogramming factors OCT4, KLF4, SOX2, and CMYC. These MODY-hiPSCs morphologically resemble human pluripotent stem cells (hPSCs), express pluripotency markers OCT4, SOX2, NANOG, SSEA-4, and TRA-1–60, give rise to derivatives of the three germ layers in a teratoma assay, and are karyotypically normal. Overall, our MODY-hiPSCs serve as invaluable tools to dissect the role of MODY genes in the development of pancreas and islet cells and to evaluate their significance in regulating beta cell function. This knowledge will aid future attempts aimed at deriving functional mature beta cells from hPSCs.  相似文献   
163.
164.
ABSTRACT

Endogenous glucocorticoids have diverse physiological effects and are important regulators of metabolism, immunity, cardiovascular function, musculoskeletal health and central nervous system activity. Synthetic glucocorticoids have received widespread attention for their potent anti-inflammatory activity and have become an important class of drugs used to augment endogenous glucocorticoid activity for the treatment of a host of chronic inflammatory conditions. Chronic use of synthetic glucocorticoids is associated with a number of adverse effects as a result of the persistent dysregulation of glucocorticoid sensitive pathways. A failure to consider the pronounced circadian rhythmicity of endogenous glucocorticoids can result in either supraphysiological glucocorticoid exposure or severe suppression of endogenous glucocorticoid secretion, and is thought be a causal factor in the incidence of adverse effects during chronic glucocorticoid therapy. Furthermore, given that synthetic glucocorticoids have potent feedback effects on the hypothalamic-pituitary-adrenal (HPA) axis, physiological factors which can give rise to individual variability in HPA axis activity such as sex, age, and disease state might also have substantial implications for therapy. We use a semi-mechanistic mathematical model of the rodent HPA axis to study how putative sex differences and individual variability in HPA axis regulation can influence the effects of long-term synthetic exposure on endogenous glucocorticoid circadian rhythms. Model simulations suggest that for the same drug exposure, simulated females exhibit less endogenous suppression than males considering differences in adrenal sensitivity and negative feedback to the hypothalamus and pituitary. Simulations reveal that homeostatic regulatory variability and chronic stress-induced regulatory adaptations in the HPA axis network can result in substantial differences in the effects of synthetic exposure on the circadian rhythm of endogenous glucocorticoids. In general, our results provide insight into how the dosage and exposure profile of synthetic glucocorticoids could be manipulated in a personalized manner to preserve the circadian dynamics of endogenous glucocorticoids during chronic therapy, thus potentially minimizing the incidence of adverse effects associated with long-term use of glucocorticoids  相似文献   
165.
Fibroblast growth factor 21 (FGF21) is an important endocrine metabolic regulator expressed in multiple tissues including liver and adipose tissue. Although highest levels of expression are in pancreas, little is known about the function of FGF21 in this tissue. In order to understand the physiology of FGF21 in the pancreas, we analyzed its expression and regulation in both acinar and islet tissues. We found that acinar tissue express 20-fold higher levels than that observed in islets. We also observed that pancreatic FGF21 is nutritionally regulated; a marked reduction in FGF21 expression was noted with fasting while obesity is associated with 3–4 fold higher expression. Acinar and islet cells are targets of FGF21, which when systemically administered, leads to phosphorylation of the downstream target ERK 1/2 in about half of acinar cells and a small subset of islet cells. Chronic, systemic FGF21 infusion down-regulates its own expression in the pancreas. Mice lacking FGF21 develop significant islet hyperplasia and periductal lymphocytic inflammation when fed with a high fat obesogenic diet. Inflammatory infiltrates consist of TCRb+ Thy1+ T lymphocytes with increased levels of Foxp3+ regulatory T cells. Increased levels of inflammatory cells were coupled with elevated expression of cytokines such as TNFα, IFNγ and IL1β. We conclude that FGF21 acts to limit islet hyperplasia and may also prevent pancreatic inflammation.  相似文献   
166.
167.
In the present studies, effects of glucose analogue, 2-deoxy-D-glucose (2-DG) on radiation-induced cell cycle perturbations were investigated in human tumor cell lines. In unirradiated cells, the levels of cyclin B1 in G2 phase were significantly higher in both the glioma cell lines as compared to squamous carcinoma cells. Upon irradiation with Co60 gamma-rays (2 Gy), the cyclin B1 levels were reduced in U87 cells, while no significant changes could be observed in other cell lines, which correlated well with the transient G2 delay observed under these conditions by the BrdU pulse chase measurements. 2-DG (5 mM, 2 hr) induced accumulation of cells in the G2 phase and a time-dependent increase in the levels of cyclin B1 in both the glioma cell lines, while significant changes could not be observed in any of the squamous carcinoma cell lines. 2-DG enhanced the cyclin B1 level further in all the cell lines following irradiation, albeit to different extents. Interestingly, an increase in the unscheduled expression of B1 levels in G1 phase 48 hr after irradiation was observed in all the cell lines investigated. 2-DG also increased the levels of cyclin D1 at 24 hr in BMG-1 cell line. These observations imply that 2-DG-induced alterations in the cell cycle progression are partly responsible for its radiomodifying effects.  相似文献   
168.
Detrimental effects of hyperaccumulation of the aromatic amino acid phenylalanine (Phe) in animals, known as phenylketonuria, are mitigated by excretion of Phe derivatives; however, how plants endure Phe accumulating conditions in the absence of an excretion system is currently unknown. To achieve Phe hyperaccumulation in a plant system, we simultaneously decreased in petunia flowers expression of all three Phe ammonia lyase (PAL) isoforms that catalyze the non‐oxidative deamination of Phe to trans‐cinnamic acid, the committed step for the major pathway of Phe metabolism. A total decrease in PAL activity by 81–94% led to an 18‐fold expansion of the internal Phe pool. Phe accumulation had multifaceted intercompartmental effects on aromatic amino acid metabolism. It resulted in a decrease in the overall flux through the shikimate pathway, and a redirection of carbon flux toward the shikimate‐derived aromatic amino acids tyrosine and tryptophan. Accumulation of Phe did not lead to an increase in flux toward phenylacetaldehyde, for which Phe is a direct precursor. Metabolic flux analysis revealed this to be due to the presence of a distinct metabolically inactive pool of Phe, likely localized in the vacuole. We have identified a vacuolar cationic amino acid transporter (PhCAT2) that contributes to sequestering excess of Phe in the vacuole. In vitro assays confirmed PhCAT2 can transport Phe, and decreased PhCAT2 expression in PAL‐RNAi transgenic plants resulted in 1.6‐fold increase in phenylacetaldehyde emission. These results demonstrate mechanisms by which plants maintain intercompartmental aromatic amino acid homeostasis, and provide critical insight for future phenylpropanoid metabolic engineering strategies.  相似文献   
169.
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号