首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   851篇
  免费   54篇
  2024年   2篇
  2023年   10篇
  2022年   21篇
  2021年   34篇
  2020年   16篇
  2019年   30篇
  2018年   29篇
  2017年   22篇
  2016年   37篇
  2015年   36篇
  2014年   54篇
  2013年   64篇
  2012年   69篇
  2011年   76篇
  2010年   42篇
  2009年   25篇
  2008年   48篇
  2007年   40篇
  2006年   48篇
  2005年   34篇
  2004年   27篇
  2003年   16篇
  2002年   23篇
  2001年   10篇
  2000年   12篇
  1999年   8篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1992年   2篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   7篇
  1986年   5篇
  1985年   2篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1974年   6篇
  1973年   3篇
  1971年   1篇
  1969年   2篇
  1965年   3篇
  1961年   1篇
  1959年   1篇
  1936年   1篇
排序方式: 共有905条查询结果,搜索用时 15 毫秒
111.
Peptide/protein hormones could be stored as non-toxic amyloid-like structures in pituitary secretory granules. ACTH and β-endorphin are two of the important peptide hormones that get co-stored in the pituitary secretory granules. Here, we study molecular interactions between ACTH and β-endorphin and their colocalization in the form of amyloid aggregates. Although ACTH is known to be a part of ACTH-β-endorphin aggregate, ACTH alone cannot aggregate into amyloid under various plausible conditions. Using all atom molecular dynamics simulation we investigate the early molecular interaction events in the ACTH-β-endorphin system, β-endorphin-only system and ACTH-only system. We find that β-endorphin and ACTH formed an interacting unit, whereas negligible interactions were observed between ACTH molecules in ACTH-only system. Our data suggest that ACTH is not only involved in interaction with β-endorphin but also enhances the stability of mixed oligomers of the entire system.  相似文献   
112.
Vibrio cholerae produces cholera toxin (CT) that consists of two subunits, A and B, and is encoded by a filamentous phage CTXΦ. The A subunit carries enzymatic activity that ribosylates ADP, whereas the B subunit binds to monosialoganglioside (GM1) receptor in epithelial cells. Molecular analysis of toxigenic V. cholerae strains indicated the presence of multiple ctxB genotypes. In this study, we employed a comparative modeling approach to define the structural features of all known variants of ctxB found in O139 serogroup V. cholerae. Modeling, molecular dynamics and docking simulations studies suggested subtle variations in the binding ability of ctxB variants to carbohydrate ligands of GM1 (galactose, sialic acid and N-acetyl galactosamine). These findings throw light on the molecular efficiencies of pathogenic isolates of V. cholerae harboring natural variants of ctxB in causing the disease, thus suggesting the need to consider ctxB variations when designing vaccines against cholera.  相似文献   
113.
Toxoplasma gondii is an obligate intracellular apicomplexan parasite that can infect a wide range of warm-blooded animals including humans. In humans and other intermediate hosts, toxoplasma develops into chronic infection that cannot be eliminated by host's immune response or by currently used drugs. In most cases, chronic infections are largely asymptomatic unless the host becomes immune compromised. Thus, toxoplasma is a global health problem and the situation has become more precarious due to the advent of HIV infections and poor toleration of drugs used to treat toxoplasma infection, having severe side effects and also resistance have been developed to the current generation of drugs. The emergence of these drug resistant varieties of T. gondii has led to a search for novel drug targets. We have performed a comparative analysis of metabolic pathways of the host Homo sapiens and the pathogen T. gondii. The enzymes in the unique pathways of T. gondii, which do not show similarity to any protein from the host, represent attractive potential drug targets. We have listed out 11 such potential drug targets which are playing some important work in more than one pathway. Out of these, one important target is Glutamate dehydrogenase enzyme; it plays crucial part in oxidation reduction, metabolic process and amino acid metabolic process. As this is also present in the targets of tropical diseases of TDR (Tropical disease related Drug) target database and no PDB and MODBASE 3D structural model is available, homology models for Glutamate dehydrogenase enzyme were generated using MODELLER9v6. The model was further explored for the molecular dynamics simulation study with GROMACS, virtual screening and docking studies with suitable inhibitors against the NCI diversity subset molecules from ZINC database, by using AutoDock-Vina. The best ten docking solutions were selected (ZINC01690699, ZINC17465979, ZINC17465983, ZINC18141294_03, ZINC05462670, ZINC01572309, ZINC18055497_01, ZINC18141294, ZINC05462674 and ZINC13152284_01). Further the Complexes were analyzed through LIGPLOT. On the basis of Complex scoring and binding ability it is deciphered that these NCI diversity set II compounds, specifically ZINC01690699 (as it has minimum energy score and one of the highest number of interactions with the active site residue), could be promising inhibitors for T. gondii using Glutamate dehydrogenase as Drug target.  相似文献   
114.
Lately, it has become clear that regulatory T cells (Tregs) play a major role in the maintenance of peripheral tolerance and control of autoimmunity. Despite these critical functions, the process underlying the development of Tregs remains largely undefined. Herein, altered peptide ligand (APL) variants derived from the proteolipid protein-1 (PLP1) epitope were expressed on immunoglobulins (Igs) and the resulting Ig-APLs were used to deliver the APLs from mother to fetus through the maternal placenta to influence thymic T cell selection. This delivery system was then adapted to the SJL/J mouse, a strain that expresses only the DM20 form of PLP, which lacks the dominant PLP1 epitope in the thymus during fetal and neonatal development. This model, which restores thymic T cell selection for PLP1, was then used to determine whether affinity plays a role in the development of Tregs. The findings show that fetal exposure to low-affinity peptide ligand was unable to drive development of Tregs while variants with higher affinity to the TCR resulted in significant seeding of the periphery with mature, naive Tregs. Thus, contrary to pathogenic T cells, Tregs require avid TCR-ligand interaction to undergo thymic development and maturation.  相似文献   
115.
116.
Short-circuit current (Isc) measurement is used to quantify transepithelial ion flux. This technique provides a direct measure of net charge transport across a cell monolayer. Isc however, lacks chemical selectivity. Chemically resolved ion fluxes may be much greater than Isc, and differ in different biological processes. This work describes a novel experimental approach and deconvolution method to obtain temporally resolved ion fluxes at epithelial cell monolayers. HT29-Cl.16E cells, a sub clone of the human colonic cancer cell line HT29 was used as a model cell line to validate this approach in the context of epithelial transport studies. This cell line is known to secrete chloride in response to purinergic stimulation. Changes in chloride concentration after stimulation with 1 mM ATP plus 50 nM phorbol-myristate acetate (PMA) are recorded with a chloride ion-selective electrode (ISE) at a short distance (∼50 μm) from the monolayer. The recorded concentrations are transformed to corresponding chloride flux across the monolayer using a deconvolution algorithm for extracellular mass transport based on minimization of the shape error function (Nair and Gratzl in Anal Chem 77:2875–2888, 2005). Simultaneous voltage clamp yields the associated net electrical charge flux (Isc). The dynamics of Cl flux did correlate with that of the electrical flux, but was found to be greater in amplitude. This suggests that Cl may not be the only ion secreted. The method of simultaneously assessing ionic and electrical fluxes with a temporal resolution of seconds provides unique information about the dynamics of solute fluxes across the apical membrane. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
117.
Potato is planted after rice in several parts of Punjab in India and both crops are attacked by Rhizoctonia solani Kühn. Potato tubers showing black scurf and rice plants affected by sheath blight were collected from different regions of the state and the isolates of R. solani so obtained were studied to determine their variability and to ascertain their cross-infectivity and response to fungicides. Potato isolates of R. solani did not infect rice plants but some rice isolates were weakly pathogenic on potato, the sclerotia being less firmly attached on tuber surface, indicating a possible unsuccessful attempt of rice isolates to infect potato. Rice isolates (66.6%) grew faster (>20 mm colony growth per 24 h) than those of the potato isolates (15–20 mm growth rate per 24 h). Hyphal width of isolates from both hosts varied from 7.2 to 12.1 μm. Colony growth of most potato isolates (61.2%) was appressed, whereas that of most rice isolates (53.3%) was fluffy. Rice isolates (73.3%) formed larger sclerotia (1.5–2.0 mm in diameter) than those of the potato isolates (0.5–1.0 mm in diameter). Anastomosis studies indicated that potato isolates belonged to AG-3 and AG-5 groups while rice isolates belonged to the AG-1-1-A group. Representative R. solani isolates from the two hosts showed significant variation in response to fungicides (i.e. carbendazim, carboxin, pencycuron, propiconazole and validamycin) based on their ED50 and ED90 values.  相似文献   
118.
An overview of enzymatic production of biodiesel   总被引:13,自引:0,他引:13  
Biodiesel production has received considerable attention in the recent past as a biodegradable and nonpolluting fuel. The production of biodiesel by transesterification process employing alkali catalyst has been industrially accepted for its high conversion and reaction rates. Recently, enzymatic transesterification has attracted much attention for biodiesel production as it produces high purity product and enables easy separation from the byproduct, glycerol. But the cost of enzyme remains a barrier for its industrial implementation. In order to increase the cost effectiveness of the process, the enzyme (both intracellular and extracellular) is reused by immobilizing in a suitable biomass support particle and that has resulted in considerable increase in efficiency. But the activity of immobilized enzyme is inhibited by methanol and glycerol which are present in the reacting mixture. The use of tert-butanol as solvent, continuous removal of glycerol, stepwise addition of methanol are found to reduce the inhibitory effects thereby increasing the cost effectiveness of the process. The present review analyzes these methods reported in literature and also suggests a suitable method for commercialization of the enzymatic process.  相似文献   
119.
120.
Reef-building corals are renowned for their brilliant colours yet the biochemical basis for the pigmentation of corals is unknown. Here, we show that these colours are due to a family of GFP-like proteins that fluoresce under ultraviolet (UV) or visible light. Pigments from ten coral species were almost identical to pocilloporin (Dove et al. 1995) being dimers or trimers with approximately 28-kDa subunits. Degenerative primers made to common N-terminal sequences yielded a complete sequence from reef-building coral cDNA, which had 19.6% amino acid identity with green fluorescent protein (GFP). Molecular modelling revealed a `β-can' structure, like GFP, with 11 β-strands and a completely solvent-inaccessible fluorophore composed of the modified residues Gln-61, Tyr-62 and Gly-63. The molecular properties of pocilloporins indicate a range of functions from the conversion of high-intensity UV radiation into photosynthetically active radiation (PAR) that can be regulated by the dinoflagellate peridinin-chlorophyll-protein (PCP) complex, to the shielding of the Soret and Qx bands of chlorophyll a and c from scattered high-intensity light. These properties of pocilloporin support its potential role in protecting the photosynthetic machinery of the symbiotic dinoflagellates of corals under high light conditions and in enhancing the availability of photosynthetic light under shade conditions. Accepted: 29 May 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号