首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   547篇
  免费   38篇
  585篇
  2024年   3篇
  2023年   11篇
  2022年   21篇
  2021年   31篇
  2020年   15篇
  2019年   21篇
  2018年   23篇
  2017年   19篇
  2016年   28篇
  2015年   21篇
  2014年   41篇
  2013年   55篇
  2012年   43篇
  2011年   54篇
  2010年   33篇
  2009年   20篇
  2008年   31篇
  2007年   19篇
  2006年   29篇
  2005年   21篇
  2004年   15篇
  2003年   8篇
  2002年   11篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
  1973年   1篇
排序方式: 共有585条查询结果,搜索用时 0 毫秒
101.
Detrimental effects of hyperaccumulation of the aromatic amino acid phenylalanine (Phe) in animals, known as phenylketonuria, are mitigated by excretion of Phe derivatives; however, how plants endure Phe accumulating conditions in the absence of an excretion system is currently unknown. To achieve Phe hyperaccumulation in a plant system, we simultaneously decreased in petunia flowers expression of all three Phe ammonia lyase (PAL) isoforms that catalyze the non‐oxidative deamination of Phe to trans‐cinnamic acid, the committed step for the major pathway of Phe metabolism. A total decrease in PAL activity by 81–94% led to an 18‐fold expansion of the internal Phe pool. Phe accumulation had multifaceted intercompartmental effects on aromatic amino acid metabolism. It resulted in a decrease in the overall flux through the shikimate pathway, and a redirection of carbon flux toward the shikimate‐derived aromatic amino acids tyrosine and tryptophan. Accumulation of Phe did not lead to an increase in flux toward phenylacetaldehyde, for which Phe is a direct precursor. Metabolic flux analysis revealed this to be due to the presence of a distinct metabolically inactive pool of Phe, likely localized in the vacuole. We have identified a vacuolar cationic amino acid transporter (PhCAT2) that contributes to sequestering excess of Phe in the vacuole. In vitro assays confirmed PhCAT2 can transport Phe, and decreased PhCAT2 expression in PAL‐RNAi transgenic plants resulted in 1.6‐fold increase in phenylacetaldehyde emission. These results demonstrate mechanisms by which plants maintain intercompartmental aromatic amino acid homeostasis, and provide critical insight for future phenylpropanoid metabolic engineering strategies.  相似文献   
102.
Fibroblast growth factor 21 (FGF21) is an important endocrine metabolic regulator expressed in multiple tissues including liver and adipose tissue. Although highest levels of expression are in pancreas, little is known about the function of FGF21 in this tissue. In order to understand the physiology of FGF21 in the pancreas, we analyzed its expression and regulation in both acinar and islet tissues. We found that acinar tissue express 20-fold higher levels than that observed in islets. We also observed that pancreatic FGF21 is nutritionally regulated; a marked reduction in FGF21 expression was noted with fasting while obesity is associated with 3–4 fold higher expression. Acinar and islet cells are targets of FGF21, which when systemically administered, leads to phosphorylation of the downstream target ERK 1/2 in about half of acinar cells and a small subset of islet cells. Chronic, systemic FGF21 infusion down-regulates its own expression in the pancreas. Mice lacking FGF21 develop significant islet hyperplasia and periductal lymphocytic inflammation when fed with a high fat obesogenic diet. Inflammatory infiltrates consist of TCRb+ Thy1+ T lymphocytes with increased levels of Foxp3+ regulatory T cells. Increased levels of inflammatory cells were coupled with elevated expression of cytokines such as TNFα, IFNγ and IL1β. We conclude that FGF21 acts to limit islet hyperplasia and may also prevent pancreatic inflammation.  相似文献   
103.
ABSTRACT

Endogenous glucocorticoids have diverse physiological effects and are important regulators of metabolism, immunity, cardiovascular function, musculoskeletal health and central nervous system activity. Synthetic glucocorticoids have received widespread attention for their potent anti-inflammatory activity and have become an important class of drugs used to augment endogenous glucocorticoid activity for the treatment of a host of chronic inflammatory conditions. Chronic use of synthetic glucocorticoids is associated with a number of adverse effects as a result of the persistent dysregulation of glucocorticoid sensitive pathways. A failure to consider the pronounced circadian rhythmicity of endogenous glucocorticoids can result in either supraphysiological glucocorticoid exposure or severe suppression of endogenous glucocorticoid secretion, and is thought be a causal factor in the incidence of adverse effects during chronic glucocorticoid therapy. Furthermore, given that synthetic glucocorticoids have potent feedback effects on the hypothalamic-pituitary-adrenal (HPA) axis, physiological factors which can give rise to individual variability in HPA axis activity such as sex, age, and disease state might also have substantial implications for therapy. We use a semi-mechanistic mathematical model of the rodent HPA axis to study how putative sex differences and individual variability in HPA axis regulation can influence the effects of long-term synthetic exposure on endogenous glucocorticoid circadian rhythms. Model simulations suggest that for the same drug exposure, simulated females exhibit less endogenous suppression than males considering differences in adrenal sensitivity and negative feedback to the hypothalamus and pituitary. Simulations reveal that homeostatic regulatory variability and chronic stress-induced regulatory adaptations in the HPA axis network can result in substantial differences in the effects of synthetic exposure on the circadian rhythm of endogenous glucocorticoids. In general, our results provide insight into how the dosage and exposure profile of synthetic glucocorticoids could be manipulated in a personalized manner to preserve the circadian dynamics of endogenous glucocorticoids during chronic therapy, thus potentially minimizing the incidence of adverse effects associated with long-term use of glucocorticoids  相似文献   
104.
Maturity onset diabetes of the young (MODY) is an autosomal dominant disease. Despite extensive research, the mechanism by which a mutant MODY gene results in monogenic diabetes is not yet clear due to the inaccessibility of patient samples. Induced pluripotency and directed differentiation toward the pancreatic lineage are now viable and attractive methods to uncover the molecular mechanisms underlying MODY. Here we report, for the first time, the derivation of human induced pluripotent stem cells (hiPSCs) from patients with five types of MODY: MODY1 (HNF4A), MODY2 (GCK), MODY3 (HNF1A), MODY5 (HNF1B), and MODY8 (CEL) with a polycistronic lentiviral vector expressing a Cre-excisable human “stem cell cassette” containing the four reprogramming factors OCT4, KLF4, SOX2, and CMYC. These MODY-hiPSCs morphologically resemble human pluripotent stem cells (hPSCs), express pluripotency markers OCT4, SOX2, NANOG, SSEA-4, and TRA-1–60, give rise to derivatives of the three germ layers in a teratoma assay, and are karyotypically normal. Overall, our MODY-hiPSCs serve as invaluable tools to dissect the role of MODY genes in the development of pancreas and islet cells and to evaluate their significance in regulating beta cell function. This knowledge will aid future attempts aimed at deriving functional mature beta cells from hPSCs.  相似文献   
105.
106.
107.
108.
In normotensive rabbits topical application of Daucus carota seed extract at the concentration of 0.3, 0.6 and 1.2% resulted in mean IOP reduction of 19.33. 23.20 and 25.61% respectively from baseline. As no significant difference was observed between the change in IOP in 0.6 and 1.2% extract treated groups, 0.6% concentration was chosen for further evaluation in rabbits with experimentally elevated IOP. In water loaded rabbits, maximum mean IOP reduction with 0.6% extract was 29.39%, which was comparable to pilocarpine. In steroid pretreated rabbits, maximum mean IOP reduction was 30.27% from baseline, which was significantly higher than pilocarpine. The extract showed a comparatively slower onset of action however, the duration of action was comparable to pilocarpine in all the experimental models.  相似文献   
109.

Background

Relapsing fever (RF) spirochetes are notable for multiphasic antigenic variation of polymorphic outer membrane lipoproteins, a phenomenon responsible for immune evasion. An additional role in tissue localization is suggested by the finding that isogenic serotypes 1 (Bt1) and 2 (Bt2) of the RF spirochete Borrelia turicatae, which differ only in the Vsp they express, exhibit marked differences in clinical disease severity and tissue localization during infection.

Methodology/Principal Findings

Here we used known vsp DNA sequences encoding for B. turicatae and Borrelia hermsii Vsp proteins with variable regions and then studied whether there are differences in disease expression and tissue localization of their corresponding serotypes during mouse infection. For sequence and structural comparisons we focused exclusively on amino acid residues predicted to project away from the spirochetes surface, referred to as the Vsp dome. Disease severity and tissue localization were studied during persistent infection with individual or mixed serotypes in SCID mice. The results showed that all Vsp domes clustered into 3 main trunks, with the domes for B. turicatae Vsp1 (BtVsp1) and BtVsp2 clustering into separate ones. B. hermsii serotypes whose Vsp domes clustered with the BtVsp1 dome were less virulent but localized to the brain more. The BtVsp2 dome was the oddball among all and Bt2 was the only serotype that caused severe arthritis.

Conclusion/Significance

These findings indicate that there is significant variability in Vsp dome structure, disease severity, and tissue localization among serotypes of B. hermsii.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号