全文获取类型
收费全文 | 325篇 |
免费 | 33篇 |
专业分类
358篇 |
出版年
2024年 | 1篇 |
2022年 | 7篇 |
2021年 | 11篇 |
2020年 | 9篇 |
2019年 | 7篇 |
2018年 | 6篇 |
2017年 | 3篇 |
2016年 | 9篇 |
2015年 | 15篇 |
2014年 | 19篇 |
2013年 | 28篇 |
2012年 | 29篇 |
2011年 | 16篇 |
2010年 | 19篇 |
2009年 | 9篇 |
2008年 | 17篇 |
2007年 | 9篇 |
2006年 | 11篇 |
2005年 | 12篇 |
2004年 | 10篇 |
2003年 | 5篇 |
2002年 | 9篇 |
2001年 | 3篇 |
2000年 | 5篇 |
1999年 | 3篇 |
1998年 | 4篇 |
1997年 | 1篇 |
1996年 | 9篇 |
1994年 | 3篇 |
1993年 | 2篇 |
1992年 | 5篇 |
1991年 | 5篇 |
1990年 | 1篇 |
1989年 | 9篇 |
1988年 | 1篇 |
1987年 | 4篇 |
1986年 | 2篇 |
1984年 | 4篇 |
1983年 | 2篇 |
1982年 | 4篇 |
1979年 | 5篇 |
1978年 | 2篇 |
1977年 | 5篇 |
1976年 | 3篇 |
1975年 | 3篇 |
1974年 | 4篇 |
1973年 | 1篇 |
1972年 | 1篇 |
1970年 | 2篇 |
1969年 | 4篇 |
排序方式: 共有358条查询结果,搜索用时 15 毫秒
71.
72.
Bhagat Yogesh S. Bhat Ramesh S. Kolekar Rohini M. Patil Ashlesha C. Lingaraju S. Patil R. V. Udikeri S. S. 《Transgenic research》2019,28(3-4):299-315
Transgenic Research - Root knot nematodes are serious threats to growth and yield of solaneous crops including tomato. In this study, a binary vector carrying Remusatia vivipara... 相似文献
73.
74.
75.
76.
Vijayakrishnan S Qamra R Verma CS Sen R Mande SC 《Journal of biomolecular structure & dynamics》2006,23(4):365-376
The ubiquitously occurring chaperonins consist of a large tetradecameric Chaperonin-60, forming a cylindrical assembly, and a smaller heptameric Chaperonin-10. For a functional protein folding cycle, Chaperonin-10 caps the cylindrical Chaperonin-60 from one end forming an asymmetric complex. The oligomeric assembly of Chaperonin-10 is known to be highly plastic in nature. In Mycobacterium tuberculosis, the plasticity has been shown to be modulated by reversible binding of divalent cations. Binding of cations confers rigidity to the metal binding loop, and also promotes stability of the oligomeric structure. We have probed the conformational effects of cation binding on the Chaperonin-10 structure through fluorescence studies and molecular dynamics simulations. Fluorescence studies show that cation binding induces reduced exposure and flexibility of the dome loop. The simulations corroborate these results and further indicate a complex landscape of correlated motions between different parts of the molecule. They also show a fascinating interplay between two distantly spaced loops, the metal binding "dome loop" and the GroEL-binding "mobile loop", suggesting an important cation-mediated role in the recognition of Chaperonin-60. In the presence of cations the mobile loop appears poised to dock onto the Chaperonin-60 structure. The divalent metal ions may thus act as key elements in the protein folding cycle, and trigger a conformational switch for molecular recognition. 相似文献
77.
Natasha Mhatre Fernando Montealegre-Z Rohini Balakrishnan Daniel Robert 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2009,195(5):453-462
Crickets have two tympanal membranes on the tibiae of each foreleg. Among several field cricket species of the genus Gryllus (Gryllinae), the posterior tympanal membrane (PTM) is significantly larger than the anterior membrane (ATM). Laser Doppler
vibrometric measurements have shown that the smaller ATM does not respond as much as the PTM to sound. Hence the PTM has been
suggested to be the principal tympanal acoustic input to the auditory organ. In tree crickets (Oecanthinae), the ATM is slightly
larger than the PTM. Both membranes are structurally complex, presenting a series of transverse folds on their surface, which
are more pronounced on the ATM than on the PTM. The mechanical response of both membranes to acoustic stimulation was investigated
using microscanning laser Doppler vibrometry. Only a small portion of the membrane surface deflects in response to sound.
Both membranes exhibit similar frequency responses, and move out of phase with each other, producing compressions and rarefactions
of the tracheal volume backing the tympanum. Therefore, unlike field crickets, tree crickets may have four instead of two
functional tympanal membranes. This is interesting in the context of the outstanding question of the role of spiracular inputs
in the auditory system of tree crickets. 相似文献
78.
Stefan Czurda Wolfgang Jechlinger Renate Rosengarten Rohini Chopra-Dewasthaly 《Journal of bacteriology》2010,192(17):4462-4473
Surface antigen variation in Mycoplasma agalactiae, the etiologic agent of contagious agalactia in sheep and goats, is governed by site-specific recombination within the vpma multigene locus encoding the Vpma family of variable surface lipoproteins. This high-frequency Vpma phase switching was previously shown to be mediated by a Xer1 recombinase encoded adjacent to the vpma locus. In this study, it was demonstrated in Escherichia coli that the Xer1 recombinase is responsible for catalyzing vpma gene inversions between recombination sites (RS) located in the 5′-untranslated region (UTR) in all six vpma genes, causing cleavage and strand exchange within a 21-bp conserved region that serves as a recognition sequence. It was further shown that the outcome of the site-specific recombination event depends on the orientation of the two vpma RS, as direct or inverted repeats. While recombination between inverted vpma RS led to inversions, recombination between direct repeat vpma RS led to excisions. Using a newly developed excision assay based on the lacZ reporter system, we were able to successfully demonstrate under native conditions that such Xer1-mediated excisions can indeed also occur in the M. agalactiae type strain PG2, whereas they were not observed in the control xer1-disrupted VpmaY phase-locked mutant (PLMY), which lacks Xer1 recombinase. Unless there are specific regulatory mechanisms preventing such excisions, this might be the cost that the pathogen has to render at the population level for maintaining this high-frequency phase variation machinery.Members of the bacterial class Mollicutes, which are generally referred to as mycoplasmas, are considered among the simplest self-replicating prokaryotes carrying minimal genomes. Even having lost many biosynthetic pathways during a reductive evolution, mycoplasmas represent important pathogens of humans, animals, and plants, as they are equipped with sophisticated molecular mechanisms allowing them to spontaneously change their cell surface repertoire to persist in immunocompetent hosts (25).The important ruminant pathogen Mycoplasma agalactiae causes contagious agalactia in sheep and goats and exhibits antigenic diversity by site-specific DNA rearrangements within a pathogenicity island-like gene locus (9, 10, 26). The so-called vpma locus constitutes a family of six distinct but related genes that encode major immunodominant membrane lipoproteins, the Vpmas (variable proteins of Mycoplasma agalactiae) (10, 11). These surface-associated proteins vary in expression at an unusually high frequency, and only one vpma gene at a time is transcribed from a single promoter present in that locus, while all other genes are silent (9, 10). An open reading frame (ORF) with homology to the λ-integrase family of site-specific recombinases was found in the vicinity of the vpma locus and was predicted to mediate DNA inversions responsible for switching the promoter from an active vpma gene to a silent one, resulting in alteration of vpma expression (9, 10). This recombinase, designated Xer1, was indeed recently demonstrated to be responsible for phase variation of Vpma proteins (4). Targeted knockouts of the xer1 gene by homologous recombination prevented Vpma switching and produced Vpma phase-locked mutants (PLMs) steadily expressing a single vpma gene without any variation. Complementation of the wild-type xer1 gene in these PLMs restored Vpma phase variation (4). Similar systems generating surface diversity by DNA inversions involving site-specific recombination have been identified in other mycoplasma species (3, 18, 26).Site-specific recombination systems are widespread among bacteria, and the biological functions of these systems depend strongly on the participating recombination sites (RS) (16, 24, 27). Excision events between direct repeat RS usually resolve chromosome or plasmid dimers, which can arise through homologous recombination, ensuring proper segregation of newly replicated genetic material to daughter cells (1). Also, site-specific recombination mediates integration and excision of phage genomes into and out of the host chromosome (13). In contrast, site-specific inversion involving inverted repeat RS generates genetic diversity and often controls the expression of genes that are important for pathogenesis (21).The Xer1 recombinase of M. agalactiae belongs to the λ-integrase family of site-specific recombinases (10). Members of this family share four strongly conserved amino acid residues (R-H-R-Y) within the C-terminal half of the protein. This tetrad includes the active tyrosine residue that is directly involved in the recombination reaction (8). Recombination occurs by formation and resolution of a Holliday junction intermediate involving a covalent linkage between the recombinase and the DNA through the tyrosine residue. Since energy cofactors such as ATP are not required, such recombination events can occur in the absence of replication (16, 24).Sequence alignment of vpma genes identified a conserved 21-bp region within the 5′-untranslated region (UTR) in all vpma genes that was predicted to be involved in Xer1-mediated inversions (10). The present study clearly demonstrates that the Xer1 recombinase recognizes RS located within the 5′ UTR of vpma genes, causing cleavage and strand exchange within a conserved region of 21 bp. By placing two vpma-derived RS on a plasmid along with the xer1 gene, recombination events were demonstrated in Escherichia coli upon Xer1 induction via PCR and restriction analysis. Although the conserved 21-bp region was sufficient for inversions, additional nucleotides flanking it at the 5′ end were found to have a positive influence on the rate of recombination. An interesting outcome of these studies was that Xer1 also mediated excisions between direct repeat vpma RS in E. coli. This raised the intriguing possibility that such Xer1-mediated excisions also occur in the native M. agalactiae system. For further analysis of such excision events in the native system, we tested the feasibility of using the lacZ reporter tool in M. agalactiae, as lacZ is known to be expressed successfully in few other mycoplasma species, to study gene expression by use of promoter probe vectors (15, 19, 22, 23). We developed an excision assay based on blue-white phenotype selection to study Xer1-mediated excisions in M. agalactiae, thus displaying a novel application of the lacZ reporter gene in mycoplasmas. Successful implementation of this reporter system demonstrated Xer1-mediated excisions in the M. agalactiae type strain PG2, based on blue-white selection and PCR analysis. As expected, such excisions were not observed in the control xer1-disrupted VpmaY phase-locked mutant (PLMY), which lacks Xer1. Excisions in the native system imply that genetic material is susceptible to loss, which might be the cost for maintaining the machinery of high-frequency gene shuffling for a greater population advantage, unless there are specific regulatory mechanisms preventing such excisions. 相似文献
79.
Rohini Agrawal Virendra Nath Harish Kumar 《Journal of receptor and signal transduction research》2018,38(2):122-132
Cardiometabolic syndrome (CMetS) is a consolidation of metabolic disorders characterized by insulin resistance, dyslipidemia and hypertension. Curcumin, a natural bioactive compound, has been shown to possess notable anti-oxidant activity and it has also been included as a super natural herb in the super natural herbs database. Most of the beneficial effects of Curcumin are possibly due to activation of the nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ). The present study investigates molecular interactions of curcumin with PPARγ protein through molecular docking and molecular dynamics (MD) simulation studies. Further, effect of curcumin on high fat diet induced CMetS was studied in rats along with western blot for PPARγ and nuclear factor-κB (NF-κB) expressions and histopathological studies. Computational studies presented several significant molecular interactions of curcumin including Ser289, His323, His449 and Tyr473 of PPARγ. The in vivo results further confirmed that curcumin was able to ameliorate the abnormal changes and also, increased PPARγ expressions. The results confirm our hypothesis that activation of PPARγ by curcumin possesses the therapeutic potential to ameliorate the altered levels of metabolic changes in rats in the treatment of CMetS. This is the first report of CMetS treatment by curcumin and study of its underlying mechanism through in silico as well as in vivo experiments. 相似文献
80.
Mair N Benetti C Andratsch M Leitner MG Constantin CE Camprubí-Robles M Quarta S Biasio W Kuner R Gibbins IL Kress M Haberberger RV 《PloS one》2011,6(2):e17268
Sphingosine-1-phosphate (S1P) is a key regulator of immune response. Immune cells, epithelia and blood cells generate high levels of S1P in inflamed tissue. However, it is not known if S1P acts on the endings of nociceptive neurons, thereby contributing to the generation of inflammatory pain. We found that the S1P1 receptor for S1P is expressed in subpopulations of sensory neurons including nociceptors. Both S1P and agonists at the S1P1 receptor induced hypersensitivity to noxious thermal stimulation in vitro and in vivo. S1P-induced hypersensitivity was strongly attenuated in mice lacking TRPV1 channels. S1P and inflammation-induced hypersensitivity was significantly reduced in mice with a conditional nociceptor-specific deletion of the S1P1 receptor. Our data show that neuronally expressed S1P1 receptors play a significant role in regulating nociceptor function and that S1P/S1P1 signaling may be a key player in the onset of thermal hypersensitivity and hyperalgesia associated with inflammation. 相似文献