首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   8篇
  225篇
  2024年   1篇
  2022年   7篇
  2021年   9篇
  2020年   8篇
  2019年   7篇
  2018年   6篇
  2017年   3篇
  2016年   8篇
  2015年   14篇
  2014年   16篇
  2013年   24篇
  2012年   24篇
  2011年   15篇
  2010年   16篇
  2009年   6篇
  2008年   10篇
  2007年   9篇
  2006年   8篇
  2005年   7篇
  2004年   8篇
  2003年   4篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有225条查询结果,搜索用时 0 毫秒
41.
The Influenza A virus is one of the principle causes of respiratory illness in human. The surface glycoprotein of the influenza virus, neuraminidase (NA), has a vital role in the release of new viral particle and spreads infection in the respiratory tract. It has been long recognized as a valid drug target for influenza A virus infection. Oseltamivir is used as a standard drug of choice for the treatment of influenza. However, the emergence of mutants with novel mutations has increased the resistance to potent NA inhibitor. In the present investigation, we have employed computer-assisted combinatorial techniques in the screening of 8621 molecules from Drug Bank to find potent NA inhibitors. A three-dimensional pharmacophore model was generated from the previously reported 28 carbocylic influenza NA inhibitors along with oseltamivir using PHASE module of Schrödinger Suite. The model generated consists of one hydrogen bond acceptor (A), one hydrogen bond donors (D), one hydrophobic group (H), and one positively charged group (P), ADHP. The hypothesis was further validated for its integrity and significance using enrichment analysis. Subsequently, an atom-based 3D-QSAR model was built using the common pharmacophore hypothesis (CPH). The developed 3D-QSAR model was found to be statistically significant with R2 value of 0.9866 and Q2 value of 0.7629. Further screening was accomplished using three-stage docking process using the Glide algorithm. The resultant lead molecules were examined for its drug-like properties using the Qikprop algorithm. Finally, the calculated pIC50 values of the lead compounds were validated by the AutoQSAR algorithm. Overall, the results from our analysis highlights that lisinopril (DB00722) is predicted to bind better with NA than currently approved drug. In addition, it has the best match in binding geometry conformations with the existing NA inhibitor. Note that the antiviral activity of lisinopril is reported in the literature. However, our paper is the first report on lisinopril activity against influenza A virus infection. These results are envisioned to help design the novel NA inhibitors with an increased antiviral efficacy.  相似文献   
42.
The male song of the duetting grasshopper Chorthippus biguttulus consists of syllables alternating with noisy pauses. The syllable-pause structure is important for song recognition by the female. Using playback experiments we investigated the mechanism by which intensity modulations within the song pattern are used to detect syllable onsets and offsets. We varied the relative onset level (level of the syllable beginning relative to the noisy pause) and the relative offset level (level of the noisy pause relative to the syllable end) independently in different experiments. For all females, an increase in intensity defining the syllable onset was necessary to evoke responses. Syllable offset cues were not always necessary: some females responded to continuous noise stimuli wherein only syllable onsets were marked by short pulses of high intensity. Those females that did not require syllable offset cues did not, however, lack a functional pause detection mechanism, since their responses to model songs containing silent pauses were restricted to a given range of pause durations. We propose that syllable-pause detection involves two independent processes: (1) syllable onset detection by a phasic neuronal unit that can be re-activated only after a short pause, and (2) the rejection of unacceptably long pauses by a second unit.  相似文献   
43.
An approximately 5.0 kb Sau3A I genomic DNA fragment from Streptomyces aureofaciens NRRL 2209 was cloned in a plasmid vector and introduced into Escherichia coli. The recombinant E. coli accumulated polyhydroxyalkanoates (PHAs) as cytoplasmic inclusions. The accumulated PHA was identified as the isotactic homopolymer of PHB with a molecular weight of 2.85x10(5). Purified PHB granules were spherical with an average size of 1.1 microm and of stable configuration. DSC thermogram suggested high crystalline nature of the polymer. Maximum thermal degradation of the biopolymer occurred between 250 and 340 degrees C. Recombinant E. coli cells preferentially utilized glycerol as the carbon source and accumulated 25-28 times more PHB than the native S. aureofaciens.  相似文献   
44.
45.
Mutations in human laforin lead to an autosomal neurodegenerative disorder Lafora disease. In N-terminal carbohydrate binding domain of laforin, two mutations W32G and K87A are reported as highly disease causing laforin mutants. Experimental studies reported that mutations are responsible for the abolishment of glycogen binding which is a critical function of laforin. Our current computational study focused on the role of conformational changes in human laforin structure due to existing single mutation W32G and prepared double mutation W32G/K87A related to loss of glycogen binding. We performed 10 ns molecular dynamics (MD) simulation studies in the Gromacs package for both mutations and analyzed the trajectories. From the results, the global properties like root mean square deviation, root mean square fluctuation, radius of gyration, solvent accessible surface area and hydrogen bonds showed structural changes in atomic level observed in W32G and W32G/K87A laforin mutants. The conformational change induced by mutants influenced the loss of the overall stability of the native laforin. Moreover, the change in overall motion of protein was analyzed by principal component analysis and results showed protein clusters expanded more than native and also change in direction in case of double mutant in conformational space. Overall, our report provides theoretical information on loss of structure–function relationship due to flexible nature of laforin mutants. In conclusion, comparative MD simulation studies support the experimental data on W32G and W32G/K87A related to the lafora disease mechanism on glycogen binding.  相似文献   
46.
Glutamatergic signaling and intracellular calcium mobilization in the spinal cord are crucial for the development of nociceptive plasticity, which is associated with chronic pathological pain. Long-form Homer proteins anchor glutamatergic receptors to sources of calcium influx and release at synapses, which is antagonized by the short, activity-dependent splice variant Homer1a. We show here that Homer1a operates in a negative feedback loop to regulate the excitability of the pain pathway in an activity-dependent manner. Homer1a is rapidly and selectively upregulated in spinal cord neurons after peripheral inflammation in an NMDA receptor-dependent manner. Homer1a strongly attenuates calcium mobilization as well as MAP kinase activation induced by glutamate receptors and reduces synaptic contacts on spinal cord neurons that process pain inputs. Preventing activity-induced upregulation of Homer1a using shRNAs in mice in vivo exacerbates inflammatory pain. Thus, activity-dependent uncoupling of glutamate receptors from intracellular signaling mediators is a novel, endogenous physiological mechanism for counteracting sensitization at the first, crucial synapse in the pain pathway. Furthermore, we observed that targeted gene transfer of Homer1a to specific spinal segments in vivo reduces inflammatory hyperalgesia. Thus, Homer1 function is crucially involved in pain plasticity and constitutes a promising therapeutic target for the treatment of chronic inflammatory pain.  相似文献   
47.
A series of N'-1-[2-anilino-3-pyridyl]carbonyl-1-benzenesulfonohydrazide derivatives (7a-i) was synthesized and five of them were selected by the National Cancer Institute (NCI) and evaluated for their in vitro anticancer activity. Three of the investigated compounds 7d, 7f and 7g exhibited significant anticancer activity in the primary assay and further tested against a panel of 60 human tumour cell lines. Compound 7g showed 50% growth inhibitory activity in leukaemia, melanoma, lung cancer, colon cancer, renal cancer and breast cancer cells with GI(50) value of 3.2-9.6 microM. The synthesized compounds (7a-i) were also evaluated for their antibacterial activity against various Gram-positive and Gram-negative strains of bacteria. Most of these compounds showed better inhibitory activity in comparison to the standard drugs.  相似文献   
48.
Niemann-Pick disease type C (NPC) and Wolman disease are two members of a family of storage disorders caused by mutations of genes encoding lysosomal proteins. Deficiency in function of either the NPC1 or NPC2 protein in NPC disease or lysosomal acid lipase in Wolman disease results in defective cellular cholesterol trafficking. Lysosomal accumulation of cholesterol and enlarged lysosomes are shared phenotypic characteristics of both NPC and Wolman cells. Utilizing a phenotypic screen of an approved drug collection, we found that δ-tocopherol effectively reduced lysosomal cholesterol accumulation, decreased lysosomal volume, increased cholesterol efflux, and alleviated pathological phenotypes in both NPC1 and Wolman fibroblasts. Reduction of these abnormalities may be mediated by a δ-tocopherol-induced intracellular Ca2+ response and subsequent enhancement of lysosomal exocytosis. Consistent with a general mechanism for reduction of lysosomal lipid accumulation, we also found that δ-tocopherol reduces pathological phenotypes in patient fibroblasts from other lysosomal storage diseases, including NPC2, Batten (ceroid lipofuscinosis, neuronal 2, CLN2), Fabry, Farber, Niemann-Pick disease type A, Sanfilippo type B (mucopolysaccharidosis type IIIB, MPSIIIB), and Tay-Sachs. Our data suggest that regulated exocytosis may represent a potential therapeutic target for reduction of lysosomal storage in this class of diseases.  相似文献   
49.
Real-time PCR (qRT-PCR) is the standard method for studying changes in relative gene expression in complex diseases like obesity and gastritis. However, variations in amount of starting material, enzymatic efficiency and presence of amplification inhibitors can lead to quantification errors. Hence, the need for accurate data normalization is vital. Among several known strategies for data normalization, the use of reference genes as an internal control is the most common approach. Human gastric tissue has been the least investigated for stability of reference gene expression. In this study, three popular algorithms, GeNorm, NormFinder and BestKeeper were used to evaluate the reference gene stability. Conclusion: HPRT1 and GAPDH are the best performing pair of reference genes for qRT-PCR profiling experiments involving non-malignant gastric tissue samples.  相似文献   
50.
ABSTRACT: Eukaryotic microorganisms are important but understudied components of the human microbiome. Here we present a pipeline for analysis of deep sequencing data on single cell eukaryotes. We designed a new 18S rRNA gene specific PCR primer set and compared a published rRNA gene internal transcribed spacer (ITS) gene primer set. Amplicons were tested against 24 specimens from defined eukaryotes and eight well-characterized human stool samples. A software pipeline (https://sourceforge.net/projects/brocc/) was developed for taxonomic attribution, validated against simulated data, and tested on pyrosequence data. This study provides a well-characterized tool kit for sequence-based enumeration of eukaryotic organisms in human microbiome samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号