首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   806篇
  免费   38篇
  844篇
  2022年   17篇
  2021年   20篇
  2020年   11篇
  2019年   15篇
  2018年   16篇
  2017年   9篇
  2016年   15篇
  2015年   28篇
  2014年   34篇
  2013年   36篇
  2012年   50篇
  2011年   44篇
  2010年   43篇
  2009年   24篇
  2008年   27篇
  2007年   25篇
  2006年   29篇
  2005年   24篇
  2004年   21篇
  2003年   25篇
  2002年   17篇
  2001年   14篇
  2000年   17篇
  1999年   12篇
  1998年   9篇
  1997年   6篇
  1996年   8篇
  1994年   6篇
  1993年   7篇
  1992年   19篇
  1991年   24篇
  1990年   12篇
  1989年   12篇
  1988年   12篇
  1987年   11篇
  1986年   7篇
  1985年   13篇
  1984年   12篇
  1983年   13篇
  1981年   8篇
  1980年   7篇
  1979年   6篇
  1978年   8篇
  1977年   6篇
  1974年   8篇
  1973年   9篇
  1971年   5篇
  1970年   6篇
  1969年   5篇
  1963年   4篇
排序方式: 共有844条查询结果,搜索用时 15 毫秒
11.
This study aims to establish an efficient protocol for development of seedlings of an endangered medicinally important forest tree Boswellia serrata Roxb., for mass plantation and consistent supply of salai guggul. The green mature fruits served as source of seeds. The excised green zygotic embryos were cultured on Gamborg (B5), McCown and Loyd (WPM) and Schenk and Hildebrandt (SH) media fortified with different concentration of sucrose and on Murashige and Skoog (MS) medium containing 3 % sucrose, polyvinylpyrrolidone (PVP) (0–300 mg l−l), Gibberellic acid (GA3), Indoleacetic acid (IAA), Naphthaleneacetic acid (NAA), Indole-3-Butyric acid (IBA) or 2,4-dichlorophenoxyacetic acid (2,4 D) and 6-benzylaminopurine (BA) or kinetin (Kin) individually. The highest frequency of embryo germination (96 %) and conversion into seedling was obtained on MS medium containing 3 % sucrose together with 200 mg l−l PVP; other media were either inferior or induced abnormalities in the seedlings including callus formation from the zygotic embryos. Fully developed seedlings could be successfully established in soil with about 94 % survival. The embryos from mature dry seeds did not respond for germination in any of the experiments. In conclusion, selection of zygotic embryo from green mature seeds and their in vitro germination is important for propagation of B. serrata.  相似文献   
12.
Human prenatal ethanol exposure that occurs during a period of increased synaptogenesis known as the 'brain growth spurt' has been associated with significant impairments in attention, learning and memory. Recent studies have shown that administration of ethanol to infant rats during the synaptogenesis period (first 2 weeks after birth) triggers extensive apoptotic neurodegeneration throughout many regions of the developing brain and results in cognitive dysfunctions as the animal matures. The present study was designed with an aim to investigate the effect of resveratrol, a polyphenolic phytoalexin (trans-3,5,4-trihydroxy stilbene) present in red wine on alcohol-induced cognitive deficits and neuronal apoptosis in rat pups postnatally exposed to ethanol. Pups were administered ethanol (5 g/kg, 12% v/v) by intragastric intubation on postnatal days 7, 8, and 9. Ethanol-exposed pups showed impaired memory performance in both Morris water maze elevated plus maze task recorded by using computer tracking with EthoVision software. Behavioral deficit in ethanol-exposed pups was associated with enhanced acetylcholinesterase activity, increased oxidative-nitrosative stress, cytokine (TNF-α, IL-1β and TGF-β), nuclear factor kappa beta and caspase 3 levels in both cerebral cortex and hippocampus. Chronic treatment with resveratrol (10 and 20 mg/kg) significantly attenuated all the behavioral, biochemical and molecular changes in different brain regions of ethanol administered pups. The major finding of the study is that resveratrol blocks activation of nuclear factor kappa beta pathway and apoptotic signaling and prevents cognitive deficits in rats postnatally exposed to ethanol.  相似文献   
13.
14.
Ca(2+)-permeable AMPA receptors are densely expressed in the spinal dorsal horn, but their functional significance in pain processing is not understood. By disrupting the genes encoding GluR-A or GluR-B, we generated mice exhibiting increased or decreased numbers of Ca(2+)-permeable AMPA receptors, respectively. Here, we demonstrate that AMPA receptors are critical determinants of nociceptive plasticity and inflammatory pain. A reduction in the number of Ca(2+)-permeable AMPA receptors and density of AMPA channel currents in spinal neurons of GluR-A-deficient mice is accompanied by a loss of nociceptive plasticity in vitro and a reduction in acute inflammatory hyperalgesia in vivo. In contrast, an increase in spinal Ca(2+)-permeable AMPA receptors in GluR-B-deficient mice facilitated nociceptive plasticity and enhanced long-lasting inflammatory hyperalgesia. Thus, AMPA receptors are not mere determinants of fast synaptic transmission underlying basal pain sensitivity as previously thought, but are critically involved in activity-dependent changes in synaptic processing of nociceptive inputs.  相似文献   
15.
16.
17.
A series of trisubstituted indolizine analogues has been designed as a result of a fragment-based approach to target the inhibition of mycobacterial enoyl-acyl carrier protein reductase. Anti-tuberculosis (TB) screening of the characterized compounds by a resazurin microplate assay method revealed that ethyl group at second position of indolizine nucleus exhibited activity against susceptible and multidrug-resistant strains of Mycobacterium tuberculosis at concentration of 5.5 and 11.3 μg/mL, respectively. A molecular docking study was also conducted to evaluate the stability of the active compounds, and compound with ethyl substitution at second position of indolizine nucleus showed the highest free binding energy of ΔG ?24.11 (kcal/mol), a low clash score of 3.04, and high lipo score of ?13.33. Indolizine analog with ethyl substitution at second position demonstrated Molecular Mechanics/Generalized Born Surface Area (?23.85 kcal/mol). Two molecular dynamics studies were computed (100 ps and 50 ns) to calculate the relationship between the potential and kinetic energies of the active anti-TB compound with time and temperature. The discovery of this lead may have a positive impact on anti-TB drug discovery.  相似文献   
18.
Caveolin-1 is the principal structural component of caveolae microdomains, which represent a subcompartment of the plasma membrane. Several independent lines of evidence support the notion that caveolin-1 functions as a suppressor of cell transformation. For example, the human CAV-1 gene maps to a suspected tumor suppressor locus (D7S522/7q31.1) that is frequently deleted in a number of carcinomas, including breast cancers. In addition, up to 16% of human breast cancers harbor a dominant-negative mutation, P132L, in the CAV-1 gene. Despite these genetic associations, the tumor suppressor role of caveolin-1 still remains controversial. To directly assess the in vivo transformation suppressor activity of the caveolin-1 gene, we interbred Cav-1 (-/-) null mice with tumor-prone transgenic mice (MMTV-PyMT) that normally develop multifocal dysplastic lesions throughout the entire mammary tree. Herein, we show that loss of caveolin-1 gene expression dramatically accelerates the development of these multifocal dysplastic mammary lesions. At 3 wk of age, loss of caveolin-1 resulted in an approximately twofold increase in the number of lesions (foci per gland; 3.3 +/- 1.0 vs. 7.0 +/- 1.2) and an approximately five- to sixfold increase in the total area occupied by these lesions. Similar results were obtained at 4 wk of age. However, complete loss of caveolin-1 was required to accelerate the appearance of these dysplastic mammary lesions, because Cav-1 (+/-) heterozygous mice did not show any increases in foci development. We also show that loss of caveolin-1 increases the extent and the histological grade of these mammary lesions and facilitates the development of papillary projections in the mammary ducts. Finally, we demonstrate that cyclin D1 expression levels are dramatically elevated in Cav-1 (-/-) null mammary lesions, consistent with the accelerated appearance and growth of these dysplastic foci. This is the first in vivo demonstration that caveolin-1 can function as a transformation suppressor gene.  相似文献   
19.
 A cytoplasmic male-sterility system has been developed in mustard (Brassica juncea) following repeated backcrossings of the somatic hybrid Moricandia arvensis (2n=28, MM)+B. juncea (2n=36, AABB), carrying mitochondria and chloroplasts from M. arvensis, to Brassica juncea. Cytoplasmic male-sterile (CMS) plants are similar to normal B. juncea; however, the leaves exhibit severe chlorosis resulting in delayed flowering. Flowers are normal with slender, non-dehiscent anthers and excellent nectaries. CMS plants show regular meiosis with pollen degeneration occurring during microsporogenesis. Female fertility was normal. Genetic information for fertility restoration was introgressed following the development of a M. arvensis monosomic addition line on CMS B. juncea. The additional chromosome paired allosyndetically with one of the B. juncea bivalents and allowed introgression. The putative restorer plant also exhibited severe chlorosis similar to CMS plants but possessed 89% and 73% pollen and seed fertility, respectively, which subsequently increased to 96% and 87% in the selfed progeny. The progeny of the cross of CMS line with the restorer line MJR-15, segregated into 1 fertile : 1 sterile. The CMS (Moricandia) B. juncea, the restorer (MJR-15), and fertility restored F1 plants possess similar cytoplasmic organellar genomes as revealed by ‘Southern’ analysis. Received: 17 September 1997 / Accepted: 18 February 1998  相似文献   
20.
The mono-ADP-ribosyltransferase (mART) toxins are contributing factors to a number of human diseases, including cholera, diphtheria, traveler''s diarrhea, and whooping cough. VahC is a cytotoxic, actin-targeting mART from Aeromonas hydrophila PPD134/91. This bacterium is implicated primarily in diseases among freshwater fish species but also contributes to gastrointestinal and extraintestinal infections in humans. VahC was shown to ADP-ribosylate Arg-177 of actin, and the kinetic parameters were Km(NAD+) = 6 μm, Km(actin) = 24 μm, and kcat = 22 s−1. VahC activity caused depolymerization of actin filaments, which induced caspase-mediated apoptosis in HeLa Tet-Off cells. Alanine-scanning mutagenesis of predicted catalytic residues showed the predicted loss of in vitro mART activity and cytotoxicity. Bioinformatic and kinetic analysis also identified three residues in the active site loop that were critical for the catalytic mechanism. A 1.9 Å crystal structure supported the proposed roles of these residues and their conserved nature among toxin homologues. Several small molecules were characterized as inhibitors of in vitro VahC mART activity and suramin was the best inhibitor (IC50 = 20 μm). Inhibitor activity was also characterized against two other actin-targeting mART toxins. Notably, these inhibitors represent the first report of broad spectrum inhibition of actin-targeting mART toxins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号