首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   489篇
  免费   40篇
  2023年   5篇
  2022年   10篇
  2021年   28篇
  2020年   5篇
  2019年   14篇
  2018年   12篇
  2017年   16篇
  2016年   25篇
  2015年   39篇
  2014年   34篇
  2013年   43篇
  2012年   50篇
  2011年   37篇
  2010年   27篇
  2009年   22篇
  2008年   20篇
  2007年   22篇
  2006年   20篇
  2005年   16篇
  2004年   11篇
  2003年   13篇
  2002年   18篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1994年   3篇
  1993年   1篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1973年   2篇
  1967年   1篇
  1966年   1篇
  1961年   1篇
  1957年   1篇
  1952年   1篇
  1948年   1篇
  1942年   1篇
排序方式: 共有529条查询结果,搜索用时 15 毫秒
521.
The Old World tree frogs (Anura: Rhacophoridae), with 387 species, display a remarkable diversity of reproductive modes – aquatic breeding, terrestrial gel nesting, terrestrial foam nesting and terrestrial direct development. The evolution of these modes has until now remained poorly studied in the context of recent phylogenies for the clade. Here, we use newly obtained DNA sequences from three nuclear and two mitochondrial gene fragments, together with previously published sequence data, to generate a well‐resolved phylogeny from which we determine major patterns of reproductive‐mode evolution. We show that basal rhacophorids have fully aquatic eggs and larvae. Bayesian ancestral‐state reconstructions suggest that terrestrial gel‐encapsulated eggs, with early stages of larval development completed within the egg outside of water, are an intermediate stage in the evolution of terrestrial direct development and foam nesting. The ancestral forms of almost all currently recognized genera (except the fully aquatic basal forms) have a high likelihood of being terrestrial gel nesters. Direct development and foam nesting each appear to have evolved at least twice within Rhacophoridae, suggesting that reproductive modes are labile and may arise multiple times independently. Evolution from a fully aquatic reproductive mode to more terrestrial modes (direct development and foam nesting) occurs through intermediate gel nesting ancestral forms. This suggests that gel nesting is not only a possible transitional state for the evolution of terrestriality, but also that it is a versatile reproductive mode that may give rise to other terrestrial reproductive modes. Evolution of foam nesting may have enabled rhacophorids to lay a larger number of eggs in more open and drier habitats, where protection from desiccation is important. Terrestrial direct development allows frogs to lay eggs independent of bodies of water, in a diversity of humid habitats, and may represent a key innovation that facilitated the evolution of nearly half of all known rhacophorid species.  相似文献   
522.
523.
524.
Quantitative analysis of fatty acids (FAs) is an important area of analytical biochemistry. Ultra high sensitivity FA analysis usually is done with gas chromatography of pentafluorobenzyl esters coupled to an electron-capture detector. With the popularity of electrospray ionization (ESI) mass spectrometers coupled to liquid chromatography, it would be convenient to develop a method for ultra high sensitivity FA detection using this equipment. Although FAs can be analyzed by ESI in negative ion mode, this method is not very sensitive. In this study, we demonstrate a new method of FA analysis based on conversion of the carboxylic acid to an amide bearing a permanent positive charge, N-(4-aminomethylphenyl)pyridinium (AMPP) combined with analysis on a reverse-phase liquid chromatography column coupled to an ESI mass spectrometer operating in positive ion mode. This leads to an ∼60,000-fold increase in sensitivity compared with the same method carried out with underivatized FAs. The new method is about 10-fold more sensitive than the existing method of gas chromatography/electron-capture mass spectrometry of FA pentafluorobenzyl esters. Furthermore, significant fragmentation of the precursor ions in the nontag portion improves analytical specificity. We show that a large number of FA molecular species can be analyzed with this method in complex biological samples such as mouse serum.  相似文献   
525.
Diagnosis of mild to moderate traumatic brain injury is challenging because brain tissue damage progresses slowly and is not readily detectable by conventional imaging techniques. We have developed a novel in vitro model to study primary blast loading on dissociated neurons using nitroamine explosives such as those used on the battlefield. Human neuroblastoma cells were exposed to single and triple 50-psi explosive blasts and single 100-psi blasts. Changes in membrane permeability and oxidative stress showed a significant increase for the single and triple 100-psi blast conditions compared with single 50-psi blast and controls.  相似文献   
526.
BioMetals - Iron is an essential component for multiple biological processes. Its regulation within the body is thus tightly controlled. Dysregulation of iron levels within the body can result in...  相似文献   
527.
We recently reported the synthesis of 2′-fluorinated Northern-methanocarbacyclic (2′-F-NMC) nucleotides, which are based on a bicyclo[3.1.0]hexane scaffold. Here, we analyzed RNAi-mediated gene silencing activity in cell culture and demonstrated that a single incorporation of 2′-F-NMC within the guide or passenger strand of the tri-N-acetylgalactosamine-conjugated siRNA targeting mouse Ttr was generally well tolerated. Exceptions were incorporation of 2′-F-NMC into the guide strand at positions 1 and 2, which resulted in a loss of the in vitro activity. Activity at position 1 was recovered when the guide strand was modified with a 5′ phosphate, suggesting that the 2′-F-NMC is a poor substrate for 5′ kinases. In mice, the 2′-F-NMC-modified siRNAs had comparable RNAi potencies to the parent siRNA. 2′-F-NMC residues in the guide seed region position 7 and at positions 10, 11 and 12 were well tolerated. Surprisingly, when the 5′-phosphate mimic 5′-(E)-vinylphosphonate was attached to the 2′-F-NMC at the position 1 of the guide strand, activity was considerably reduced. The steric constraints of the bicyclic 2′-F-NMC may impair formation of hydrogen-bonding interactions between the vinylphosphonate and the MID domain of Ago2. Molecular modeling studies explain the position- and conformation-dependent RNAi-mediated gene silencing activity of 2′-F-NMC. Finally, the 5′-triphosphate of 2′-F-NMC is not a substrate for mitochondrial RNA and DNA polymerases, indicating that metabolites should not be toxic.  相似文献   
528.
529.
The Trypanosomatidae comprise a large group of parasitic protozoa, some of which cause important diseases in humans. These include Trypanosoma brucei (the causative agent of African sleeping sickness and nagana in cattle), Trypanosoma cruzi (the causative agent of Chagas' disease in Central and South America), and Leishmania spp. (the causative agent of visceral and [muco]cutaneous leishmaniasis throughout the tropics and subtropics). The cell surfaces of these parasites are covered in complex protein- or carbohydrate-rich coats that are required for parasite survival and infectivity in their respective insect vectors and mammalian hosts. These molecules are assembled in the secretory pathway. Recent advances in the genetic manipulation of these parasites as well as progress with the parasite genome projects has greatly advanced our understanding of processes that underlie secretory transport in trypanosomatids. This article provides an overview of the organization of the trypanosomatid secretory pathway and connections that exist with endocytic organelles and multiple lytic and storage vacuoles. A number of the molecular components that are required for vesicular transport have been identified, as have some of the sorting signals that direct proteins to the cell surface or organelles in the endosome-vacuole system. Finally, the subcellular organization of the major glycosylation pathways in these parasites is reviewed. Studies on these highly divergent eukaryotes provide important insights into the molecular processes underlying secretory transport that arose very early in eukaryotic evolution. They also reveal unusual or novel aspects of secretory transport and protein glycosylation that may be exploited in developing new antiparasite drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号