首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   602篇
  免费   33篇
  国内免费   1篇
  2024年   3篇
  2023年   1篇
  2022年   8篇
  2021年   17篇
  2020年   14篇
  2019年   10篇
  2018年   12篇
  2017年   12篇
  2016年   18篇
  2015年   28篇
  2014年   46篇
  2013年   34篇
  2012年   55篇
  2011年   55篇
  2010年   28篇
  2009年   30篇
  2008年   43篇
  2007年   35篇
  2006年   23篇
  2005年   18篇
  2004年   21篇
  2003年   19篇
  2002年   15篇
  2001年   18篇
  2000年   17篇
  1999年   14篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1973年   4篇
  1972年   7篇
  1971年   4篇
  1970年   2篇
  1967年   1篇
排序方式: 共有636条查询结果,搜索用时 31 毫秒
121.
122.
Shingles R  Roh MH  McCarty RE 《Plant physiology》1996,112(3):1375-1381
Chloroplast inner envelope membrane vesicles that are loaded with the pH-sensitive fluorophore, pyranine, show rapid internal acidification when nitrite is added. Acidification is dependent upon [delta]pH, with the inside of vesicles being alkaline with respect to the outside. The rate of vesicle acidification was directly proportional to the concentration of nitrite that was added and the imposed pH difference across the membrane. In contrast, added nitrate had no effect on vesicle acidification. Nitrite also caused acidification of asolectin vesicles. The extent of vesicle acidification is dependent on the internal volume of vesicles. Inner envelope and asolectin vesicles that were prepared by extrusion were approximately the same size, allowing them to be compared when the final extent of acidification, measured after the pH gradient had collapsed, was similar. The rate of nitrite-dependent acidification was similar in these two preparations at any single nitrite concentration. These results indicate that nitrite movement occurs by rapid diffusion across membranes as nitrous acid, and this movement is dependent on a proton gradient across the lipid bilayer. Under conditions approximating those in vivo, the rate of diffusion of nitrous acid far exceeds that of nitrite reduction within chloroplasts.  相似文献   
123.
Photosynthesis, leaf assimilate partitioning, flowering, and fruiting were examined in two lines of Lycopersicon esculentum Mill. transformed with a gene coding for sucrose-phosphate synthase (SPS) (EC 2.3.1.14) from Zea mays L. expressed from a tobacco ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit promoter. Plants were grown at either 35 or 65 Pa CO2 and high light (1000 mol photons·m–2·s–1). Limiting and maximum SPS activities were significantly greater (up to 12 times) in the leaves of SPS-transformed lines for all treatments. Partitioning of carbon into sucrose increased 50% for the SPS transformants. Intact leaves of the control lines exhibited CO2-insensitivity of photosynthesis at high CO2 levels, whereas the SPS transformants did not exhibit CO2-insensitivity. The O2-sensitivity of photosynthesis was also greater for the SPS-transformed lines compared to the untransformed control when measured at 65 Pa CO2. These data indicate that the SPS transformants had a reduced limitation on photosynthesis imposed by end-product synthesis. Growth at 65 Pa CO2 resulted in reduced photosynthetic capacity for control lines but not for SPS-transformed lines. When grown at 65 Pa CO2, SPS transformed lines had a 20% greater photosynthetic rate than controls when measured at 65 Pa CO2 and a 35% greater rate when measured at 105 Pa CO2. Photosynthetic rates were not different between lines when grown at 35 Pa CO2. The time to 50% blossoming was reduced and the total number of inflorescences was significantly greater for the SPS transformants when grown at either 35 or 65 Pa CO2. At 35 Pa CO2, the total fruit number of the SPS transformants was up to 1.5 times that of the controls, the fruit matured earlier, and there was up to a 32% increase in total fruit dry weight. Fruit yield was not significantly different between the lines when grown at 65 Pa CO2. Therefore, there was not a strict relationship between yield and leaf photosynthesis rate. Flowering and fruit development of the SPS-transformed lines grown at 35 Pa CO2 showed similar trends to the controls grown at 65 Pa CO2. Incidences of blossom-end rot were also reduced in the SPS-transformed lines. These data indicate that altering starch/sucrose partitioning by increasing the capacity for sucrose synthesis can affect acclimation to elevated CO2 partial pressure and flowering and fruiting in tomato.Abbreviations DAS days after seeding - nptII neomycin phos-photransferase - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - SPS sucrose-phosphate synthase - SSU Rubisco small subunit This research was supported by U.S. Department of Energy grant FG02-87ER13785. B.J.M. thanks the Natural Sciences and Engineering Research Council of Canada for financial support. We are grateful to Toni A. Voelker (Calgene Inc.) for supplying tomato seeds and valuable advice.  相似文献   
124.
This report reviews the development of a rapidin situ approach to study the physiological responses of bacteria within biofilms to disinfectants. One method utilized direct viable counts (DVC) to assess the disinfection efficacy when thin biofilms were exposed to chlorine or monochloramine. Results obtained using the DVC method were one log higher than plate count (PC) estimates of the surviving population after disinfection. Other methods incorporated the use of fluorogenic stains, a cryotomy technique to yield thin (5-m) sections of biofilm communities and examination by fluorescence microscopy. The fluorogenic stains used in this approach included 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), which indicates cellular electron transport activity and Rhodamine 123, which responds specifically to proton motive force. The use of these stains allowed the microscopic discrimination of physiologically active bacteria as well as heterogeneities of active cells within thicker biofilms. The results of experiments using these techniques with pure culture and binary population biofilms on stainless steel coupons indicated biocidal activity of chlorine-based disinfectants occurred initially at the bulk-fluid interface of the communities and progressed toward the substratum. This approach provided a unique opportunity to describe the spatial response of bacteria within biofilms to antimicrobial agents and address mechanisms explaining their comparative resistance to disinfection in a way that has not been possible using traditional approaches. Results obtained using this alternative approach were also consistently higher than PC data following disinfection. These observations suggest that traditional methods involving biofilm removal and bacterial enumeration by colony formation overestimate biocide efficacy. Hence the alternative approach described here more accurately indicates the ability of bacteria surviving disinfection to recover and grow as well as demonstrate spatial heterogeneities in cellular physiological activities within biofilms.  相似文献   
125.
Decrease in rubisco activation at high CO2 concentration was caused by decrease in carbamylation of rubisco (Rohet al., 1996). However, it is unclear whether decrease in carbamylation rate at high CO2 concentration is due to decrease in activity itself or content of rubisco activase. To clarify this ambiguity, investigation was performed to determine effects of CO2 concentration on rubisco activase with kidney bean (Phaseolus vulgaris L.) leaves grown at normal CO2 (350 ppm) and high CO2 (650 ppm) concentration. The analysis of Western blotting showed that the 50 and 14.5 kl) polypeptides were identified immunochemically as the large and small subunits of rubisco in the preparation, respectively. For the 14.5 kD small subunit, the degree of intensity at high CO2 concentration was similar to that at normal CO2 concentration. For the 50 kD large sububit, however, the intensity of a band at high CO, concentration was significantly higher than that at normal CO2 concentration, indicating that only the large subunit is affected by high CO2 concentration. The analysis of Western immunoblotting showed two major polypeptides at 46 and 42 kD which were identified as rubisco activase subunits. The intensities of two bands were shown to be higher at normal CO2 than high CO2 concentration. These data indicate that decrease of carbamylation resulting from increase of CO2 concentration was caused by rubisco activase. Finally, by employing ATP hydrolysis assay and ELISA, we also observed a significant decrease in both activity and content of rubisco activase as CO2 concentration was raised from normal to high CO2 concentration. These results suggest that decrease in rubisco carbamylation at high CO2 concentration is caused by activity itself and/or content of rubisco activase.  相似文献   
126.
Soil microorganisms play an essential role in soil ecosystem processes such as organic matter decomposition, nutrient cycling, and plant nutrient availability. The land use for greenhouse cultivation has been increasing continuously, which involves an intensive input of agricultural materials to enhance productivity; however, relatively little is known about bacterial communities in greenhouse soils. To assess the effects of environmental factors on the soil bacterial diversity and community composition, a total of 187 greenhouse soil samples collected across Korea were subjected to bacterial 16S rRNA gene pyrosequencing analysis. A total of 11,865 operational taxonomic units at a 97% similarity cutoff level were detected from 847,560 sequences. Among nine soil factors evaluated; pH, electrical conductivity (EC), exchangeable cations (Ca2+, Mg2+, Na+, and K+), available P2O5, organic matter, and NO3-N, soil pH was most strongly correlated with bacterial richness (polynomial regression, pH: R2 = 0.1683, P < 0.001) and diversity (pH: R2 = 0.1765, P < 0.001). Community dissimilarities (Bray-Curtis distance) were positively correlated with Euclidean distance for pH and EC (Mantel test, pH: r = 0.2672, P < 0.001; EC: r = 0.1473, P < 0.001). Among dominant phyla (> 1%), the relative abundances of Proteobacteria, Gemmatimonadetes, Acidobacteria, Bacteroidetes, Chloroflexi, and Planctomycetes were also more strongly correlated with pH and EC values, compared with other soil cation contents, such as Ca2+, Mg2+, Na+, and K+. Our results suggest that, despite the heterogeneity of various environmental variables, the bacterial communities of the intensively cultivated greenhouse soils were particularly influenced by soil pH and EC. These findings therefore shed light on the soil microbial ecology of greenhouse cultivation, which should be helpful for devising effective management strategies to enhance soil microbial diversity and improving crop productivity.  相似文献   
127.
We generated γ-linolenic acid (GLA, C18:3Δ6,9,12)-producing transgenic Brassica napus transformed with McD6DES, the Δ6-desaturase gene identified from pike eel (Muraenesox cinereus) under the control of the seed-specific vicilin promoter. Seed-specific expression of McD6DES in B. napus produced up to 8.4% of GLA by creating a double bond at the sixth position from the carboxyl end of linoleic acid (LA, C18:2Δ9,12) in seeds. These results demonstrate that McD6DES expression enables to reconstitute in polyunsaturated fatty acid biosynthetic pathways, highlighting the potential of GLA biosynthesis as a target for metabolic engineering of oilseed crops.  相似文献   
128.
The presence of the carcinoembryonic antigen (CEA) gene and CEA expression in the liver was tested to identify their possible roles in the liver metastasis of colorectal carcinoma. The CEA gene in the liver was identified by amplifying the CEA-specific N-terminal domain exon with digoxigenin-dUTP labeling in 16 colorectal carcinomas with liver metastases. Next, CEA expression was tested by immunostaining using the anti-CEA monoclonal antibody (T84.66, ATCC). Liver tissues from 13 stomach cancer patients and 12 colorectal cancer patients without liver metastasis were also tested as control groups. Three grades (<25%, 25-50%, and 50%< or =) were given according to the proportion of positive cells. The CEA gene was amplified in the metastatic tumor cells of the liver (2.6 +/- 0.2, mean grade +/- SEM) and their surrounding hepatocytes (1.5 +/- 0.2) in all cases. CEA expression was found in all metastatic tumor cells and 14 cases of the surrounding hepatocytes. Among the control groups, the CEA gene of the hepatocytes was found in 9 cases each of the colorectal and the stomach cancers that did not exhibit CEA expression. The level of serum CEA was related with the numbers and volume of liver metastases, but not with CEA expression in tumor cells and surrounding hepatocytes. The CEA gene in the metastatic tumor cells, not in the hepatocytes, was closely associated with CEA expression in the surrounding hepatocytes (p<0.01). Although the precise mechanism of CEA gene regulation in hepatocytes remains to be proven, the CEA gene in the metastatic tumor of the liver seems to affect CEA expression in the surrounding hepatocytes facilitating liver metastasis in colorectal carcinoma.  相似文献   
129.
130.
An Asp/His catalytic site of 10-formyltetrahydrofolate dehydrogenase (FDH) was suggested to have a similar catalytic topology with the Asp/His catalytic site of serine proteases. Many studies supported the hypothesis that serine protease inhibitors can bind and modulate the activity of serine proteases by binding to the catalytic site of serine proteases. To explore the possibility that soybean trypsin inhibitor (SBTI) can recognize catalytic sites of FDH and can make a stable complex, we carried out an SBTI-affinity column by using rat liver homogenate. Surprisingly, the Rat FDH molecule with two typical liver proteins, carbamoyl-phosphate synthetase 1 (CPS1) and betaine homocysteine S-methyltransferase (BHMT) were co-purified to homogeneity on SBTI-coupled Sepharose and Sephacryl S-200 followed by Superdex 200 FPLC columns. These three liver-specific proteins make a protein complex with 300 kDa molecular mass on the gel-filtration column chromatography in vitro. Immuno-precipitation experiments by using anti-FDH and anti-SBTI antibodies also supported the fact that FDH binds to SBTI in vitro and in vivo. These results demonstrate that the catalytic site of rat FDH has a similar structure with those of serine proteases. Also, the SBTI-affinity column will be useful for the purification of rat liver proteins such as FDH, CPS1 and BHMT.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号