首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3755篇
  免费   442篇
  4197篇
  2021年   44篇
  2019年   36篇
  2018年   35篇
  2017年   42篇
  2016年   61篇
  2015年   94篇
  2014年   116篇
  2013年   125篇
  2012年   145篇
  2011年   129篇
  2010年   103篇
  2009年   93篇
  2008年   166篇
  2007年   160篇
  2006年   133篇
  2005年   151篇
  2004年   122篇
  2003年   116篇
  2002年   102篇
  2001年   118篇
  2000年   109篇
  1999年   82篇
  1998年   58篇
  1997年   57篇
  1996年   43篇
  1995年   45篇
  1994年   32篇
  1993年   52篇
  1992年   96篇
  1991年   91篇
  1990年   89篇
  1989年   65篇
  1988年   74篇
  1987年   74篇
  1986年   65篇
  1985年   72篇
  1984年   59篇
  1983年   38篇
  1982年   38篇
  1981年   46篇
  1979年   56篇
  1978年   63篇
  1977年   38篇
  1976年   37篇
  1975年   33篇
  1974年   36篇
  1973年   29篇
  1972年   46篇
  1971年   44篇
  1969年   30篇
排序方式: 共有4197条查询结果,搜索用时 15 毫秒
91.
92.
Phragmites mauritianus is the dominant herbaceous species colonizing riverine habitats in the Kruger National Park, South Africa. These perennial systems are characterized by high annual and seasonal flow variability and a complex mosaic of patches of reeds, sand, water, rock and other vegetation. Patterns of increase and decrease in reed cover in the Letaba River were determined from aerial photographs covering a 54-year period. An initial period of reed expansion (1942–1965) was followed by a period of reed loss (1965–1977) and subsequent gradual re-establishment (1977–1996). A spatially explicit analysis of changes in reed distribution over an 8-year period (1988–1996) showed that patches of reed vegetation are, in the short term, highly dynamic elements within the river landscape. Analyzing short-term, small-scale change provides information which is not obtainable from long-term, large-scale studies. We propose that causes of reed expansion or decline cannot be determined without an understanding of both long- and short-term patterns of change.  相似文献   
93.
Fire is a primary disturbance in boreal forests and generates both positive and negative climate forcings. The influence of fire on surface albedo is a predominantly negative forcing in boreal forests, and one of the strongest overall, due to increased snow exposure in the winter and spring months. Albedo forcings are spatially and temporally heterogeneous and depend on a variety of factors related to soils, topography, climate, land cover/vegetation type, successional dynamics, time since fire, season, and fire severity. However, how these variables interact to influence albedo is not well understood, and quantifying these relationships and predicting postfire albedo becomes increasingly important as the climate changes and management frameworks evolve to consider climate impacts. Here we developed a MODIS‐derived ‘blue sky’ albedo product and a novel machine learning modeling framework to predict fire‐driven changes in albedo under historical and future climate scenarios across boreal North America. Converted to radiative forcing (RF), we estimated that fires generate an annual mean cooling of ?1.77 ± 1.35 W/m2 from albedo under historical climate conditions (1971–2000) integrated over 70 years postfire. Increasing postfire albedo along a south–north climatic gradient was offset by a nearly opposite gradient in solar insolation, such that large‐scale spatial patterns in RF were minimal. Our models suggest that climate change will lead to decreases in mean annual postfire albedo, and hence a decreasing strength of the negative RF, a trend dominated by decreased snow cover in spring months. Considering the range of future climate scenarios and model uncertainties, we estimate that for fires burning in the current era (2016) the cooling effect from long‐term postfire albedo will be reduced by 15%–28% due to climate change.  相似文献   
94.
Increasing anthropogenic carbon dioxide is causing changes to ocean chemistry, which will continue in a predictable manner. Dissolution of additional atmospheric carbon dioxide leads to increased concentrations of dissolved carbon dioxide and bicarbonate and decreased pH in ocean water. The concomitant effects on phytoplankton ecophysiology, leading potentially to changes in community structure, are now a focus of concern. Therefore, we grew the coccolithophore Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler and the diatom strains Thalassiosira pseudonana (Hust.) Hasle et Heimdal CCMP 1014 and T. pseudonana CCMP 1335 under low light in turbidostat photobioreactors bubbled with air containing 390 ppmv or 750 ppmv CO2. Increased pCO2 led to increased growth rates in all three strains. In addition, protein levels of RUBISCO increased in the coastal strains of both species, showing a larger capacity for CO2 assimilation at 750 ppmv CO2. With increased pCO2, both T. pseudonana strains displayed an increased susceptibility to PSII photoinactivation and, to compensate, an augmented capacity for PSII repair. Consequently, the cost of maintaining PSII function for the diatoms increased at increased pCO2. In E. huxleyi, PSII photoinactivation and the counter‐acting repair, while both intrinsically larger than in T. pseudonana, did not change between the current and high‐pCO2 treatments. The content of the photosynthetic electron transport intermediary cytochrome b6/f complex increased significantly in the diatoms under elevated pCO2, suggesting changes in electron transport function.  相似文献   
95.
Following a 1-h incubation of bovine alveolar macrophages in 1 to 2 mg/ml exogenous horseradish peroxidase (HRP), ultrathin sections revealed vacuolar interconnections among both labeled and unlabeled vacuoles constituting the lysosomal compartment. Four entire cells and their vacuolar components were subsequently computer resconstructed from serial transmission electron micrographs and measured using a morphometric technique. HRP-labeled and unlabeled vacuoles ranged in size from 0.5 micron to greater than or equal to 4.0 microns in diameter and occupied up to 25% of the cytoplasmic volume. HRP-containing vacuoles were distributed throughout each cell in a clumped distribution (P less than 0.05) and occupied up to 75% of the total vacuole compartment. Up to 60% of all vacuoles were interconnected through a series of openings formed by membrane fusions (average pore diameter 0.42 micron), which resulted in a labyrinth of vacuoles comprising up to 55% of the total volume of the lysosomal compartment. The area of open interconnections resulting from vacuolar fusions represented less than 1% of the total surface area of the lysosomal membrane. Rotation of a three-dimensionally reconstructed macrophage about the Y-axis revealed an interconnected vacuolar network of 75 fused vacuoles in a chain up to 21 microns in length. We have demonstrated that HRP-labeled vacuoles interconnect with each other as well as with preexisting unlabeled vacuoles. As a result of such interconnections, individual vacuoles become contributing members of a large, continuous, lysosomal compartment in bovine alveolar macrophages.  相似文献   
96.
Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2 exchange (NEE; Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km2 flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2-C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4 emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4-C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change.  相似文献   
97.
Tea is the most common beverage after water. Concerns have been raised about the safety of tea during pregnancy, especially for embryo development. We aimed at studying the effects of active tea components on developing embryos by in vitro rat embryo culture. Rat embryos during early organogenesis were cultivated in serum supplemented with one of the tea catechins. Developmental hallmarks and malformations (Mal) in the developing embryos were compared and evaluated by a standard morphological scoring system. The embryotoxicity of each tea catechin was classified according to the European Center for the Validation of Alternative Methods. Cell viability was assessed by supervital dye staining, apoptosis by TUNEL assay, and peroxidation by the 8-isoprostane EIA method. We found that (+)-catechin had the least effect on developing embryos (Mal(50)=715.1 mg/L; IC50(Mal)=435 mg/L), whereas (-)-epigallocatechin gallate had the most adverse effect (Mal(50)=54.2 mg/L; IC50(Mal)=45.8 mg/L). The major malformation in affected embryos included caudal retardation with abnormal axial flexion and delayed hind-limb formation. All catechins were classified as nonembryotoxic except (-)-epigallocatechin gallate, which was classified as weakly embryotoxic. With (-)-epigallocatechin gallate, increased numbers of nonviable and apoptotic cells in the malformed embryos were associated with increased embryo 8-isoprostane.  相似文献   
98.
Soil organisms influence plant species coexistence and invasion potential. Plant-soil feedbacks occur when plants change soil community composition such that interactions with that soil community in turn may positively or negatively affect the performance of conspecifics. Theories predict and studies show that invasions may be promoted by stronger negative soil feedbacks for native compared with exotic species. We present a counter-example of a successful invader with strong negative soil feedbacks apparently caused by host-specific, pathogenic soil fungi. Using a feedback experiment in pots, we investigated whether the relative strength of plant-soil feedbacks experienced by a non-native woody invader, Sapium sebiferum, differed from several native tree species by examining their performance in soils collected near conspecifics ('home soils') or heterospecifics ('away soils') in the introduced range. Sapium seedlings, but no native seedlings, had lower survival and biomass in its home soils compared with soils of other species (negative feedback'). To investigate biotic agents potentially responsible for the observed negative feedbacks, we conducted two additional experiments designed to eliminate different soil taxa ('rescue experiments'). We found that soil sterilization (pot experiment ) or soil fungicide applications (pot and field experiments) restored Sapium performance in home soil thereby eliminating the negative feedbacks we observed in the original experiment. Such negative feedbacks apparently mediated by soil fungi could have important effects on persistence of this invader by limiting Sapium seedling success in Sapium dominated forests (home soils) though their weak effects in heterospecific (away) soils suggest a weak role in limiting initial establishment.  相似文献   
99.
This study provides explanation for conflicting evidence in the literature relating to changes in mitochondrial function and metabolic parameters during chemically induced diabetes. Diabetes of 3 days' duration (early ketosis) did not alter heart, kidney, or liver mitochondrial respiratory rates with glutamate or succinate even though serum glucose and triglycerides were elevated. Diabetes of 5 weeks' duration did not alter kidney or liver mitochondrial function in the fed adult rat although weight gain was depressed. The amount of kidney mitochondrial protein isolated per gram of tissue was increased by 30% in the diabetic. This increase was reversed by insulin treatment as were the other biochemical modalities measured. Superimposition of a 24-hr fast resulted in enhanced gluconeogenesis as measured by an animal weight loss of 17% within 24 hr (liver weight loss, 21%) and an elevation of serum urea nitrogen by 180% compared to fasted control. Respiratory rates of diabetic kidney mitochondria with glutamate were unaffected in the fasted animal whereas diabetic liver mitochondrial respiratory rates during succinate oxidation were reduced by 43%. Respiratory control was unchanged in the fasted diabetic rat. All the observed changes were reversed by insulin. Variation in the serum and liver metabolic indices (urea nitrogen, creatinine, glycerol, free fatty acids, free amino acids, triglycerides, and glucose) and liver mitochondrial responses to 7 weeks of chemically induced diabetes was affected by the rat strain, Sprague-Dawley versus Sherman, and rat weight, 72 g versus 222 g. Liver mitochondrial respirations in fed Sherman rats were not depressed by diabetes. Both rat strains had elevated liver free fatty acids and glutamate dehydrogenase activity in the diabetic state. Serum leucine, isoleucine, and valine were more elevated and serum lysine and arginine were more depressed in the diabetic Sprague-Dawley rat than in the Sherman rat. Conjectures on these results are presented in the text.  相似文献   
100.
The relationship between the mitogenic activity of influenza type A viruses for murine B lymphocytes and the receptor-binding specificity of their hemagglutinin was examined. Receptor-binding specificity was determined by the ability of the virus to agglutinate erythrocytes that had been sialidase treated and then enzymatically resialylated to contain sialyloligosaccharides with defined sequences. Distinct differences in receptor-binding specificity were observed between strongly and weakly mitogenic viruses of the H3 subtype, with strong mitogenic activity correlating with the ability of the virus to recognize the sequence N-glycolylneuraminic acid alpha 2,6 galactose (NeuGc alpha 2,6Gal). Viruses isolated early in the evolution of the H3 subtype (from 1968 to 1971) are relatively weak mitogens and recognize the sequence N-acetylneuraminic acid alpha 2,6 galactose (NeuAc alpha 2,6Gal) but not NeuGc alpha 2,6Gal. H3 viruses isolated since 1972 are strongly mitogenic, and these viruses recognize both NeuGc alpha 2,6Gal and NeuAc alpha 2,6Gal. The amino acid substitution of Tyr for Thr at residue 155 of HA1 may be critical to this change in receptor-binding specificity and mitogenic activity of the later H3 viruses. Horse serum-resistant variants of H3 viruses, which bind preferentially to the sequence NeuAc alpha 2,3Gal, are poorly mitogenic. Differences were also observed between the receptor-binding specificity of the strongly mitogenic H3 viruses and viruses of the H2 and H6 subtypes, the mitogenic activity of which is limited to strains of mice that express the class II major histocompatibility complex glycoprotein I-E. The results indicate that the receptor-binding specificity of the hemagglutinin plays a critical role in determining the mitogenic activity of influenza viruses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号